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1. Introduction 

In the design of structures where masonry or concrete shear walls contribute to stability against horizontal 

loads, failure of the shear walls by buckling is often a governing factor for the wall's design. For horizontal 

loads that are large relative to the vertical ones, the overturning moment results in a vertical reaction that 

may be very eccentric, leading to a short compression zone underneath, see Figure 1a. This is in practice 

often handled by determining the buckling capacity of the wall per unit length, which is equivalent to 

treating the issue of buckling of the wall as if only a strip of the wall equivalent to the length of the 

compression zone underneath contributes to the buckling capacity, se Figure 1b.  

Figure 1 a): Illustration of an eccentric compression zone. b) Buckling capacity determined by considering a 

strip of the wall equivalent to the length of the compression zone 

When the length of the compression zone is small compared to the height of the wall this is a very 

conservative way of estimating buckling capacity, as a larger part of the wall will be activated, see Figure 2a. 

This paper treats the issue by applying the energy method to determine the ratio between the actual buckling 
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capacity of a wall subjected to a vertical load acting along the top and bottom over the length lp, and the 

buckling capacity of an isolated strip of the same wall with the length of lp. By this approach a factor k is 

determined. The capacity of the wall can then be determined as the capacity of a strip of the wall with a 

length given by k multiplied with the (physical) extension of the compression zone, see Figure 2b.  

 

Figure 2 a): By considering the deflection of the wall it is seen that a larger part or the whole wall is 

activated. b) By taking the deflection of the whole wall into account this is equivalent to achieve a larger 

capacity over the length of the activated zone 

An expression is set up to determine the load-bearing capacity of a wall supported at the top and bottom and 

free along the vertical sides. Both a constant distribution of the load and a linearly varying distribution of the 

load have been modelled. It turns out that the total result depends very little on whether one or the other 

modelling of the load is used. 

The problem has been solved using two approaches. The first approach is having the wall affected by a 

triangular load, pcr(z), with an extension lp, see figure 1. The load-bearing capacity is expressed as a value k, 

multiplied with the strength of a corresponding wall affected by an evenly distributed load. In the second 

approach, the load is assumed to be modelled as being constant, pcr, over the length lp.  

The analysis of both load scenarios is performed assuming that the wall 

- is plane 

- is initially without imperfections 

- is with constant thickness/stiffness, see Figure 3  

- is constructed of a linear elastic, isotropic and homogeneous material without residual stresses.  

- is centrally loaded 

p0

lp

l

x

z
y

Length of wall, l, is limited 

by openings or other 

change of stiffness 

Opening

 

Figure 3: The length of the wall is limited by openings or other changes in stiffness. This means that holes or 

other openings in the wall within the length (l) are not allowed 
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The aim is to find the ratio, k, between the capacities of the two load scenarios.  

The expression of the load-bearing capacity is determined on the basis of energy principles. Both the inner 

and outer work are determined on the basis of a critical deformation figure. As the critical deformation figure 

turns out to vary in both directions shear deformations will also occur. The magnitude of the shear stresses 

due to the shear deformations are evaluated. 

2. Theory 

The method for determining the load-bearing capacity is initially illustrated on a wall with an evenly 

distributed load over the entire length of the wall as shown in Figure 4.  

h

Pcr

x

y

d

yoFree edge Free edge

l

x

z
y

pcr(constant)

pcr(constant)

A

A

Section A-A

 
Figure 4: 

The load-bearing capacity is determined by assuming a deformed state, from which the inner and outer work 

are set up and set equal to each other: 

For a wall (a plate), the internal energy, Ui is given by [1]: 

𝑈𝑖 =
1

2
𝐷∬ ((

𝜕2𝑦

𝜕𝑥2
+

𝜕2𝑦

𝜕𝑧2
)
2

− 2(1 − 𝜈) (
𝜕2𝑦

𝜕𝑥2
𝜕2𝑦

𝜕𝑧2
− (

𝜕2𝑦

𝜕𝑥𝜕𝑧
)
2

))𝑑𝑥𝑑𝑧
𝐴

      (1) 

where 

D is the flexural rigidity of the wall given by 𝐷 =
𝐸

(1−𝜈2)

𝑡3

12
  

The external energy for applied load in the x-direction [1]: 

𝑈𝑒 =
1

2
∬ 𝑝𝑐𝑟(𝑧)(

𝜕𝑦

𝜕𝑥
)
2
𝑑𝑥𝑑𝑧

𝐴
        (2) 

Where 
1

2
∬ (

𝜕𝑦

𝜕𝑥
)
2
𝑑𝑥𝑑𝑧

𝐴
 expresses the vertical deflection as a function of the deformation in the y-direction. 

That is the shortening of the distance between the top and bottom of the wall due to the deformation of the 

wall. 

The critical deformation figure for the wall shown in Figure 4 is: 

𝑦 = 𝑦0sin(
𝑥

𝑙
𝜋)         (3) 

where y0 is the maximum deformation. 
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The magnitude of y0 turns out to be irrelevant as it is of the same power in the inner and outer work. 

By solving the equation 

𝑈𝑖 = 𝑈𝑒          (4) 

the result is found to be given by 

𝑃𝑐𝑟 =
𝜋2𝐷

ℎ2
          (5) 

Triangular load 

The capacity of the wall affected as illustrated in Figure 5 is then given by k multiplied with the capacity of 

simply supported column/wall given in the codes. 

Free edge Free edge

pcr,0

lp

l

pcr,0

x

z
y

Free edge Free edge

lp

l

h

x

z
y

pcr,0
pcr,1

pcr(z)

pcr,0pcr,1 pcr(z)

pcr(z)

pcr(z)

a) b)  
Figure 5: Wall with free vertical edges applied with linearly varying normal forces at top face. a) normal forces only at 

a part of the top face (lp < l). b) normal forces over the whole length of the top face (lp > l) 

The triangular load shown in Figure 1 can be described by: 

𝑝𝑐𝑟(𝑧) = 𝑝𝑐𝑟,0 (1 −
𝑧

𝑙𝑝
)         (6) 

For normal forces over the entire length of the top face (lp > l), lp is found as 𝑙𝑝 =
𝑝𝑐𝑟,0

𝑝𝑐𝑟,0−𝑝𝑐𝑟,1
𝑙. 

Applying the presented concept of equalizing the internal and external energy, the challenge is to determine a 

critical deformation figure that provides minimal internal work while maximizing external work. The least 

possible internal work is obtained by reducing the strain energy as much as possible, and at the same time 

maximizing the external work which is achieved by the greatest possible movement in the direction of the 

load at the position where the load acts. 

We consider a critical deflection form. If we look at the wall in Figure 3, both criteria can best be met by a 

deflection as shown in Figure 6. The deflection in the x-direction can be described by a single sin-curve and 

the variation in the z-direction must be limited. A linear function with  < 1 is used. For relatively longer 

walls (larger values of l/h) the internal energy can be reduced by also having a curvature in the z-direction as 

this will reduce the contribution of internal energy caused by a reduced curvature in the x-direction. By 

having  < 1 at the end with the smallest load the contribution to the internal energy from the curvature in 

the x-direction is reduced more than the contribution of the external energy and is thus more critical. The 

largest vertical displacements in the direction of the load are found where the load is largest (at pcr,0).  
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l

h - d

x

z

y

yo

 yo

pcr,0

pcr,0

½(h – d)

Equation (7) 

for x = ½h

 

Figure 6: Illustration of the deflection. Shown for lp < l. Same principal for lp > l 

This deflection form fulfilling these guidelines can be written with the formula: 

𝑦(𝑥, 𝑧) = ((1 + (𝜂 − 1)
𝑧

𝑙
)+A · sin (

2𝑧

𝑙
𝜋)) · sin (

𝑥

ℎ
𝜋) · 𝑦0      (7) 

Since the displacement cannot become negative, there is a limit of A: 

A ≤
1−𝜂

2𝜋
          (8) 

(7) is inserted into (1) and (2). 

Internal energy: 

𝑈𝑖 =
𝜋2𝐷

ℎ2
·
1

4
ℎ𝑙𝑦0

2 (
𝜋

ℎ
)
2
((𝜂 +

1

3
(𝜂 − 1)2 − 2(𝜂 − 1)

𝐴

2𝜋
+ 𝐴2 ∙

1

2
) + 8 (

ℎ

𝑙
)
2
(−(𝜂 − 1)

𝐴

2𝜋
+𝐴2

1

2
) +

16 (
ℎ

𝑙
)
4
𝐴2 ∙

1

2
+ 2(1 − 𝜈) (

ℎ

𝜋
)
2
((𝜂 − 1) (

𝐴

2𝜋
4(

𝜋

𝑙
)
2
) + (𝜂 − 1)

1

𝑙2
))      (9) 

The expression for the external energy must be divided into two expressions for 𝑙𝑝 ≤ 𝑙respectively 𝑙𝑝 > 𝑙. 

For 𝑙𝑝 ≤ 𝑙: 

𝑈𝑒 = 𝑝𝑐𝑟,0 ∙
1

4
ℎ𝑙𝑦0

2 (
𝜋

ℎ
)
2
(
1

2

𝑙𝑝

𝑙
+

1

3
(𝜂 − 1) (

𝑙𝑝

𝑙
)
2

+
1

12
(𝜂 − 1)2 (

𝑙𝑝

𝑙
)
3

+
𝐴

𝜋
(1 − cos (

2𝑙𝑝

𝑙
𝜋))+

𝐴

𝜋
((𝜂 − 1) −

𝑙

𝑙𝑝
)(sin (

2𝑙𝑝

𝑙
𝜋)

1

2𝜋
− cos (

2𝑙𝑝

𝑙
𝜋)

𝑙𝑝

𝑙
) +

𝐴2

32𝜋2
𝑙

𝑙𝑝
(cos(

4𝑙𝑝

𝑙
𝜋) + 1) − (𝜂 − 1)

𝐴

𝜋2
∙

(sin (
2𝑙𝑝

𝑙
𝜋) +

1

2𝜋
(

1

2𝜋2
𝑙

𝑙𝑝
−

𝑙𝑝

𝑙
) (cos(

2𝑙𝑝

𝑙
𝜋) − 1)))     (10) 

For 𝑙𝑝 > 𝑙: 

𝑈𝑒 = 𝑝𝑐𝑟,0 ·
1

4
ℎ𝑙𝑦0

2 (
𝜋

ℎ
)
2

(𝜂 + (𝜂 − 1)2 (
1

3
−

1

4

𝑙

𝑙𝑝
) − 2(𝜂 − 1)𝐴

1

2𝜋
+ 𝐴2

1

2
− (

2

3
𝜂 −

1

6
− 2𝜂𝐴

1

2𝜋
+ 𝐴2

1

4
)

𝑙

𝑙𝑝
)  (11) 
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The capacity is found by solving (4): 

By comparing with the expression for the wall affected by an evenly distributed load, the results can be put 

in the form: 

𝑝𝑐𝑟,0 = 𝑘𝜎 ·
𝜋2𝐷

ℎ2
      (12) 

The expressions must be minimized with respect to  and A. The result of this optimization is shown in 

Figures 5 and 6, where  and A are plotted as function of lp/l for different values of h/l. Figure 7-11 is 

sketched under the assumption of  = 0.2. 

 

Figure 7:  as function of lp/l for different values of h/l. Variable load 

 

 

Figure 8: A as function of lp/l for different values of h/l. Variable load 

The optimization leads to the relative deflection at x = ½h shown in Figure 8. The axis in Figure 8 faces the 

opposite direction to match the deflection shape in figure 6. 
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Figure 9: y/y0 as function of lp/l for different values of h/l. Variable load 

With knowledge of  corresponding curves for k can be calculated and plotted as a function of lp/l for 

different values of h/l, see figure 10 and 11. 

 

Figure 10: k as function of lp/l for different values of l/h. Shown for lp/l ∈ [0.00; 4.00]. Variable load 
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Figure 11: k as function of lp/l for different values of l/h. Shown for lp/l ∈ [0.00; 1.40]. Variable load 

An evaluation of whether the shear stresses in connection with the twisting of the wall can be carried is 

attached in appendix A. For concrete walls it is found that these shear stresses are not critical. For masonry 

walls an investigation as outlined in appendix A must be performed. 

Example 1 

h 6000 mm 

l 3000 mm 

lp 2500 mm 

t 180 mm 

fck 25 MPa 

fcd 17.2 MPa 

fyd 458 MPa 

 0.2  
Ec 31000 MPa 

From optimization of (4) or from Figure 6 is for l/h = 0.5 and lp/l = 0.83 found  = 0.725 and A = 0.002. 

Inserted in (9) and (10) or read from Figure 8 is found k = 2.24. To ensure that the capacity is sufficient the 

following inequality must be met: 

𝑝𝑐𝑟,0 ≤ min {
𝑘𝜎 · 𝜎𝑐𝑟(𝑐𝑜𝑑𝑒)

𝑓𝑐𝑑
  

cr(code) is found to be equal to 7.29 MPa. That value is the maximum allowable normal stress at the top of the 

wall if the approach presented in this article is not applied.  

𝑝𝑐𝑟,0 ≤ min {
2.24 · 7.29 = 16.3
17.2

  

The maximum normal stress at the top of the wall must not exceed prc,0 = 16.3 MPa in order to avoid 

instability. 

The total capacity of the wall is: 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40

k

lp/l

k (lp/l)

0,20

0,50

1,00

1,50

2,00

4,00

l/h:



Investigation of the buckling capacity of walls subjected to axial strip loads… 9 
 

𝑃𝑐𝑎𝑝 =
1

2
· 𝑝𝑐𝑟,0 · 𝑙𝑝 · 𝑡 = 3.67 MN 

Constant load 

If instead the load is modelled as a constant load with the intensity p0 as shown in Figure 12, only the 

external load needs to be modified as the deflection is of the same form. 

Free edge Free edge

p0

lp

l

x

z
y

 

Figure 12: Wall subjected by a constant load, p0 

The external work can be expressed as: 

𝑈𝑒 =
1

4
ℎ𝑝𝑐𝑟,0𝑦0

2 (
𝜋

ℎ
)
2
(𝑙𝑝 + (𝜂 − 1)

𝑙𝑝
2

𝑙
+

1

3
(𝜂 − 1)2

𝑙𝑝
3

𝑙2
+ 2𝐴 ∙

𝑙

2𝜋
(1 − cos(

2𝑙𝑝

𝑙
𝜋)) + 2(𝜂 − 1)𝐴 ∙

1

𝑙
(
𝑙2·sin(

2𝑙𝑝

𝑙
𝜋)

4𝜋2
−

𝑙·𝑙𝑝cos(
2𝑙𝑝

𝑙
𝜋)

2𝜋
)+ 𝐴2 ∙ (

𝑙𝑝

2
−

sin(
4𝑙𝑝

𝑙
𝜋)·𝑙

8𝜋
))     (13) 

Corresponding curves in the case of constant load for , A and ks are shown I Figures 13 - 15. 
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Figure 13:  as function of lp/l for different values of h/l. Constant load 

 

Figure 14: A as function of lp/l for different values of l/h. Constant load 
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Figure 15: k as function of lp/l for different values of l/h. Constant load 

Example 2 

A wall with the same geometry and material as in example 1 is considered. In order to be able to compare the 

capacity the resultant is placed at the same distance as in example 1. That means that 𝑙𝑝 =
2

3
· 2500 = 1667 

mm in this example. 

By using 
𝑙𝑝

𝑙
=

1667

3000
= 0.556 which we have from Figures 13 - 15  = 0.730, A = 0,002 and k = 1.68, it is 

noticed that the difference for  and A is very small compared with example 1. 

The capacity is: 

𝑝0 ≤ min {
1.68 · 7.29 = 12.2
17.2

  

An alternative illustration of the results presented in Figure 15 is shown in Figure 16.  
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Figure 16: klp/l as function of lp/l for different values of h/l. Constant load. The figure is in principle the 

same as Figure 15 

 

In Figure 16 example 2 is illustrated. Starting at lp/l = 0.556, going to the curve for l/h = 3000/6000 = 0.50 

the value of klp/l is found as 0.93. klp/l = 0.93 means that klp= 0.93 · 𝑙 = 0.93 · 3000 = 2800 mm. 

Hereby the wall can be analysed using a model where the wall is simply supported at top and bottom, having 

a length of 2800 mm. 

Due to the similarity of  and A the requirement to the shear capacity is the same. 

The total capacity of the wall is: 

𝑃𝑐𝑎𝑝 = 𝑝0 · 𝑙𝑝 · 𝑡 = 3.67 MN 

It is seen that the capacity is identical with the capacity found in example 1. 

In Appendix B k is shown for a wall restricted from out of plan deformations at the end opposite of the load. 

3. Concluding remarks 

A method for determining the buckling capacity of a wall subjected to a strip load acting at one end is 

presented. The method is based on energy principles and a possible form of deflection. 

The commonly used method is to only take the part of the wall which is directly beneath the load into 

account. This investigation shows that this is a very conservative approach as most or all of the wall will be 

activated. The simplest way to apply the method is to look at a section of the wall which has a length 

corresponding to the part that is directly affected multiplied by the increase factor, k, determined in the 

article. 
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Appendix A Evaluation of the shear stress 

In order to take a larger part of the wall than lp into account, the variation of deflection as a function of both x 

and z, means that shear deflection has taken place. The magnitude of the shear stresses introduced by these 

shear deflections need to be examined, to determine whether they are of a magnitude that exceeds the 

capacity of the wall. This investigation is necessary as it is an underlying assumption that the wall has the 

capacity to buckle in the shape described by our function y(x,z). An expression for the shear stresses is 

determined and applied to concrete walls with h/l ratios that are commonly used in practice. 

The shear stress due to the deformed deflection shape is: 

𝜏𝑥𝑧(𝑥, 𝑧) = 2𝐺 · 𝑧
𝜕2𝑦(𝑥,𝑧)

𝜕𝑥𝜕𝑧
       (A1) 

The equation for 
𝜕𝑦2(𝑥,𝑧)

𝜕𝑥𝜕𝑧
  inserted gives 

𝜏𝑥𝑧(𝑥, 𝑧) = 𝐺 · 𝑡
𝜋

ℎ
(((𝜂 − 1)

1

𝑙
)+ 2

𝜋

𝑙
𝐴 ∙ cos(

2𝑧

𝑙
𝜋)) cos(

𝑥

ℎ
𝜋) · 𝑦0  

The extreme values of 𝜏𝑥𝑧(𝑥, 𝑧) are found at the top and bottom (𝑥 = {
0
ℎ
) at z = ½l: 

|𝜏𝑥𝑧| =
𝜋𝑡𝑦0𝐺

𝑙ℎ
(1 − 𝜂 + 2𝜋𝐴)      (A2) 

The problem is that the magnitude of stresses is a function of the magnitude of the deflection. In the used 

analysis for calculating the capacity, the magnitude of the deflection remains unknown as y0 is of the same 

order in the internal and external work and therefor so far has played no part.  

In order to evaluate the influence of the shear an estimation of y0 is made 

𝑦0~
1

10

1

𝑟
· ℎ2        (A3) 

where 
1

𝑟
 is found based on the stress distribution at the section with the largest normal stress, cr, shown in 

Figure A9a. Estimation of the curvature is based on the assumption that the normal stress at the most 

compressed edge of the critical load is equal to fcd.  

½t ½t

cr
fcd

fcd - cr



cr

e

fcd

Eo

Ecr

a) b)

h

Pcr = A cr

x
y

yo

 

Figure A1: a) Stress distribution. b)  Illustration of the variation of E 
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Under this assumption the curvature is expressed as: 
1

𝑟
=

𝑓𝑐𝑑−𝜎𝑐𝑟

½𝑡
·

1

𝐸𝑐𝑟
       (A4) 

Various numerical simulations based on a stress-strain relation according to EC2, formula (3.14) and a 

imperfection equal to h/400 have shown that this is a conservative estimate of the curvature. In these 

numerical simulations the tasks are to equalize the eccentricity of the force in the column with the sum of the 

imperfection and the deflection. In these numerical studies cr is determined by 
𝑓𝑐𝑑

1+
𝑓𝑐𝑑

𝜋2·𝐸0𝑐𝑟
𝜆2

. 

The stress-strain relation is sketched in Figure A9b. According to Ritter Young’s modulus can be expressed 

as: 

𝐸𝑐𝑟 =
𝑓𝑐𝑑−𝜎𝑐𝑟

𝑓𝑐𝑑
· 𝐸𝑜       (A5) 

Inserted in the expression for the curvature: 
1

𝑟
=

𝑓𝑐𝑑−𝜎𝑐𝑟

½𝑡
·

𝑓𝑐𝑑

𝑓𝑐𝑑−𝜎𝑐𝑟
·
1

𝐸𝑜
  

1

𝑟
=

2𝑓𝑐𝑑

𝑡·𝐸𝑜
        (A6) 

(A6) inserted into (A3) lead to: 

𝑦0~
1

5
·
𝑓𝑐𝑑

𝐸𝑜
·
ℎ2

𝑡
       (A7) 

(A7) inserted into (A2) lead to: 

|𝜏𝑥𝑧(𝑦 = ½𝑡)|~
𝜋(1−𝜂+2𝜋𝐴)

10(1+𝜈)

ℎ

𝑙
𝑓𝑐𝑑      (A8) 

In concrete the shear capacity can be found by: 

𝜏𝑅 = 𝑐 + 𝜇𝜎       (A9) 

In vertical sections no normal stresses will be present, meaning that 𝜏𝑅 = 𝑐. According to [MPN] 𝑐 =
𝑓𝑐𝑑

𝑘
,

𝑘 =
1+sin𝜑

1−sin𝜑
= 4, the following inequality must be fulfilled: 

𝜋(1−𝜂+2𝜋𝐴)

10(1+𝜈)

ℎ

𝑙
𝑓𝑐𝑑 ≤

𝑓𝑐𝑑

𝑘
                             (A10) 

The most critical situation is found for l/h = 0.75 for very small values of lp (lp/l = 0.05). In this case the left 

side of (A10) exceeds the limit with less than 10%. Due to the conservative assessment of the maximum 

deflection, y0, this limited exceedance is considered to be acceptable. 

In horizontal joints in masonry the shear capacity can be found by: 

𝜏𝑅 = 𝑓𝑣𝑚0 + 𝜇𝑓𝑚𝜎 ≤ 𝑓𝑣𝑚𝑙𝑡                            (A11) 

For masonry walls it must be checked that the shear stress found by (A8) does not exceed the capacity found 

by (A11). 
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Appendix B k for a wall restricted from out of plan deformations at the end opposite of the load 

In figure B.1 a wall restricted from out of plan deformations is shown at the edge opposite of the load. The 

restriction of this deformation could be caused by a transverse wall. 

p0

lp

l

x

z
y

Free edge

 

Figure B.1: Wall restricted from out of plan deformations at the end opposite of the load ( = 0) 

In figure B.2 k for a wall restricted from out of plan deformations at the end opposite of the load is shown. 

The figure replaces Figure 15 in the case of a restriction at the supported end. The largest deviations between 

the graphs in Figure 15 and Figure B.2 are seen in the lowest values of l/h. 

 
Figure B.2 
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