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Point foundation. Upper and lower bound solution 

for point load and upper bound solution for 

distributed load 

Lars German Hagsten1 

Merle Rianne van Logtestijn1 

Henning Højgaard Laustsen2 

 

Abstract  

First, the case where the concentrated load, P, acts as a point on the upper face of the foundation is 

considered. Facing the bottom, an evenly distributed reaction acts, p. Subsequently, the case where the 

concentrated load acts over a finite area is considered. 

The capacity will first be determined for a circular foundation subjected to a point load. This capacity is 

achieved by using both the upper and lower bound theorems shown in section 1 and 2 respectively. It is 

shown here that the solution is exact. The upper bound solution for a foundation affected by a point load at 

one point is well known, but is included here to show similarities and differences compared to the foundation 

affected by a point load acting over a finite area. 

Subsequently, a square point foundation affected by a point load acting at a point is examined in section 3. 

Here it can be seen that the capacity of a circular and a square point foundation has the same capacity as long 

as the area of the two is equal. 

In section 4, an upper bound solution is drawn up for a circular foundation affected by a point load acting 

over a finite area.  

1 Upper bound solution for foundation affected by concentrated load acting at a point at the centre 

Figure 1 shows a local mechanism under a point foundation for a concentrated load, P, acting at a centrally 

located point. The load is lowered a distance , and the breaking mechanism forms a cone. The angular 

rotation between the part of the foundation that does not move in connection with the formation of the 

mechanism and the inclined sides of the mechanism is 
𝛿

𝑅
, where R is the radius of the mechanism in the plan. 

In the following, it is assumed that the negative moment capacity is 0,  mp` = 0. It is also required that the 

size of the foundation is larger than what is required to be able to form the optimal mechanism. The yield 

lines running from the center of the cone are positive and the moment capacity is mp. 

                                                            
1 Aarhus University, Value Engineering ApS 
2 Aarhus University 
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Figure 1 Mechanism under point load 

1.1 External work 

The external work carried out by the concentrated load will be positive as the concentrated load and its 

displacement are in the same direction. Conversely, the work carried out by the distributed reaction will be 

negative since the reaction and its displacement are directed opposite. The reaction comes from the point 

load alone, since the positive contribution of the dead load is equalized by the reaction from the dead load. 

𝐴𝑦 = 𝑃 ∙ 𝛿 − ∫ ∫
𝑅−𝑟

𝑅
𝛿 ∙ 𝑝 ∙ 𝑟𝑑𝜃 ∙ 𝑑𝑟

2𝜋

0

𝑅

0
      (1) 

𝐴𝑦 = 𝑃 ∙ 𝛿 −
1

3
𝜋 ∙ 𝑝 ∙ 𝑅2 ∙ 𝛿       (2) 

1.2 Internal work 

The internal work is generally given by: 

𝐴𝑖 = ∫ ∫  𝑚𝑝 ∙ 𝑑𝑣 ∙ 𝑑𝑟
2𝜋

0

𝑅

0
       (3) 

where dv is the angular rotation perpendicular to the yield moment mp. 

The angular rotation perpendicular to the moment vector is determined based on figure 2. The normal to the 

radial lines, which are located at the same distance from the center, meet at the same point placed above the 

center. Figure 2 shows the normals belonging to any two radial lines shown in figure 1 positioned with an 
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angle dq between them. The normals are located at a distance R from the center. The lengths of the normals 

are denoted b. 


R

b

Section B-B

b

Rdq

Section A-A

B

B

dv

 

Figure 2 Section A-A from figure 1, sketched without point load and reaction 

By inserting a section B-B as shown, it can be seen that the angular rotation between the two normals is dv. 

On section A-A it can be seen that the angle between the normals and the vertical is 
𝛿

𝑅
. The length of b is 

given by  

𝑡𝑎𝑛
𝛿

𝑅
=

𝑅

𝑏
  

𝛿

𝑅
~

𝑅

𝑏
  

𝑏 =
𝑅2

𝛿
  

As we are talking about infinitesimal angles, we allow ourselves to approximate. 

The angle dv can then be expressed as: 

𝑑𝑣 ∙ 𝑏 = 𝑅𝑑𝜃  

𝑑𝑣 =
𝑅

𝑏
𝑑𝜃  

With the expression for b inserted 

𝑑𝑣 =
𝛿

𝑅
𝑑𝜃  

Inserted in the expression for the internal work: 

𝐴𝑖 = ∫ ∫  𝑚𝑝 ∙
𝛿

𝑅
𝑑𝜃 ∙ 𝑑𝑟

2𝜋

0

𝑅

0
       (4) 

𝐴𝑖 = 2𝜋 ∙ 𝑚𝑝 · 𝛿       (5) 
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From the work equation: 

𝐴𝑦 = 𝐴𝑖  

𝑃 ∙ 𝛿 −
1

3
𝜋 ∙ 𝑝 ∙ 𝑅2 ∙ 𝛿 = 2𝜋 ∙ 𝑚𝑝 · 𝛿  

𝑚𝑝 =
𝑃

2𝜋
−

1

6
𝑝 ∙ 𝑅2       (6) 

The maximum value is immediately seen to be obtained by letting the free parameter R go towards 0; i.e. a 

cone with very steep sides. Thereby the following is obtained: 

𝑚𝑝 =
𝑃

2𝜋
        (7) 

This solution is also found in [1]. 

2 Lower bound solution for foundation affected by concentrated load acting at a point at the centre  

Consider the case where the concentrated load, P, acts as at point in the center once again. The reaction is 

again calculated evenly distributed with the intensity 𝑝 =
𝑃

𝜋𝑅2. 

In accordance with the upper bound solution, it could be obvious to calculate the moment along the radial 

lines constantly with the value mq.   

The magnitude of this constant moment can be determined by taking moment equilibrium about a line 

through the center. The result of this gives: 

𝑚𝜃 =
𝑃

3𝜋
        (8) 

By utilizing the boundary conditions vr(r = R)= mr(r = R) = 0 and vq = mrq = 0 from the rotational symmetry, 

it is obtained from the equilibrium equations of the plate in polar coordinates that: 

𝑚𝑟 = −
𝑃

6𝜋
· (1 − (

𝑟

𝑅
)

2
)       (9) 

Assuming that mq is constant thus leads to a need for reinforcement in both top and bottom. The sum of the 

reinforcement in top and bottom is identical to the need found in the upper bound solution. This solution can 

be found in [2]. Since the upper bound solution only requires reinforcement in the bottom, while the lower 

bound solution requires reinforcement in both bottom and top, the solution is not the same and therefore not 

exact. 

As seen, assuming a constant value of mq results in a negative value of mr. An illustration of this can be seen 

by looking at a section at the edge shown in figure 3. The constant value of mq on the outermost part is 

greater than what is needed to create equilibrium of this section, therefore mr must be directed opposite, and 

thus negative. 

The obvious next suggestion could be to assume mr = 0 throughout the plate. Figure 3 shows a horizontal 

section in the foundation with radius R. With thick the adjacent line of the foundation's perimeter is shown 

along with two radial lines that form the angle q with each other and a circular section at a distance r from 

the centre. 

The figures are strongly plotted with respect to the magnitude of dq. dq must be seen as an infinitesimal 

quantity (dq → 0), which means that sin(dq) ≈ dq. 
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Figure 3 

It is noted that it was previously chosen that mq should be constant. The magnitude of mq was found by 

moment equilibrium of a section through the center to 𝑚𝜃 =
1

3
· 𝑝 · 𝑅2 (=

𝑃

3𝜋
).  

As it is seen below, mq is not necessarily constant. In order to achieve moment equilbrium in the section 

shown in figure 3, the mean value of mq going from the center to the periphery is required to take on this 

value, i.e.: 

𝑚𝜃̅̅ ̅̅ =
1

𝑅
∫ 𝑚𝜃(𝑟)𝑑𝑟

𝑅

0
=

1

3
· 𝑝 · 𝑅2      (10) 

Introducing mr(r) = 0 means that 
𝜕(𝑚𝑟·𝑟)

𝜕𝑟
 = 0. 

The equations of equilibrium in polar coordinates are given by: 

1. 𝑣𝑟 · 𝑟 =
𝜕(𝑚𝑟·𝑟)

𝜕𝑟
−

𝜕𝑚𝑟𝜃

𝜕𝜃
− 𝑚𝜃      (11) 

2. 𝑣𝜃 =
1

𝑟

𝜕𝑚𝜃

𝜕𝜃
−

𝜕𝑚𝑟𝜃

𝜕𝑟
− 2

𝑚𝑟𝜃

𝑟
      (12) 

3. 
𝜕(𝑣𝑟·𝑟)

𝜕𝑟
+

𝜕𝑣𝜃

𝜕𝜃
= −𝑝 · 𝑟      (13) 

4. 
1

𝑟

𝜕2(𝑚𝑟·𝑟)

𝜕𝑟2 −
2

𝑟2

𝜕2(𝑚𝑟𝜃·𝑟)

𝜕𝑟𝜕𝜃
+

1

𝑟2

𝜕2𝑚𝜃

𝜕𝜃2 −
1

𝑟

𝜕𝑚𝜃

𝜕𝑟
= −𝑝     (14) 
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The starting point is the first equilibrium equation: 

𝑣𝑟 · 𝑟 =
𝜕(𝑚𝑟·𝑟)

𝜕𝑟
−

𝜕𝑚𝑟𝜃

𝜕𝜃
− 𝑚𝜃      (15) 

from the vertical equilibrium the following is obtained: 

𝑣𝑟 · 𝑟 = − (
1

2
𝑝 · 𝑅2 −

1

2
𝑝 · 𝑟2)       (16) 

As it has been chosen to apply  
𝜕(𝑚𝑟·𝑟)

𝜕𝑟
= 0        (17) 

just as the other boundary conditions still apply, we also have that 
𝜕𝑚𝑟𝜃

𝜕𝜃
 = 0. Therefor the equilibrium 

equation gives that: 

𝑚𝜃 =
1

2
𝑝 · 𝑅2 −

1

2
𝑝 · 𝑟2        (18) 

𝑚𝜃 =
𝑃

2𝜋
(1 − (

𝑟

𝑅
)

2
)        (19) 

To check the moment equilibrium about the line through the center, we have 

𝑚𝜃̅̅ ̅̅ =
1

𝑅
∫ 𝑚𝜃(𝑟)𝑑𝑟

𝑅

0
       (20) 

Which gives us:   

𝑚𝜃̅̅ ̅̅ =
1

3
· 𝑝 · 𝑅2       (21) 

This is as required. 

The moment distribution is thus given by: 

mr(r) = 0       (22) 

𝑚𝜃 =
𝑃

2𝜋
(1 − (

𝑟

𝑅
)

2
)        (23) 

The moment distribution across the foundation is shown in figure 4. 

The maximum value is found for r = 0, and is given by: 

𝑚𝜃 =
𝑃

2𝜋
        (24) 

The result is seen to be identical to the upper bound solution, and like the upper bound solution only requires 

reinforcement at the bottom of the foundation. The solution is thus exact. Where the moment distribution for 

the upper bound solution is not known outside the yield lines, the opposite applies for the lower bound 

solution. The upper bound solution thus requires full capacity throughout the plate and thereby also at the 

edge. As a consequence of this, the reinforcement must be anchored at the edge (typically achieved by 

bending up the reinforcement at the edge). Since the moment distribution is known throughout the 

foundation by the lower bound solution, including that mr(r) = 0 and mq varies parabolically with a maximum 

value in the centre and 0 at the edge, anchoring of reinforcement can often be left out, but this must be 

assessed in the specific case. 
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R R
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e1
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m

mq
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P

A
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q
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a) b)  
Figur 4 a) static model of circular foundation affected by point load. b) moment distribution  

In Appendix 1, a check of the four equilibrium equations is carried out. 

3. Lower bound solution for a square slab/foundation subjected to a centrally located concentrated load and 

supported by a uniformly distributed reaction 

We look at a section of a square foundation in Figure 5. This section is shaded and bounded by  

0 ≤ 𝑥 ≤ ½𝑙  

0 ≤ 𝑦 ≤ 𝑥  

P

½l ½l

x

p

P

y

½
l

½
l

vx

x

mx = 0

y

my(x,y)

 

Figure 5 square foundation 
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The other seven corresponding sections will have a similar moment distribution. 

Inspired by the corresponding study of the circular plate, it will be obvious to try with 

𝑚𝑥 = 0        (25) 

since there is an obvious similarity between mr and mx along the radial-/horizontal axis. 

Then an expression for vx is set up. vx is considered to be conducted evenly distributed through a section 

shown with a dashed line in the distance x: 

𝑣𝑥 · 8𝑥 = −(𝑙2 − (2𝑥)2)𝑝       (26) 

𝑣𝑥 = −
1

8
𝑝𝑙2 (

1

𝑥
−

4𝑥

𝑙2 )       (27) 

The following equation of equilibrium applies 

𝑣𝑥 =
𝜕𝑚𝑥

𝜕𝑥
+

𝜕𝑚𝑥𝑦

𝜕𝑦
       (28) 

Since mx is constantly equal to zero in the shaded area, we have: 

𝑚𝑥𝑦 = ∫ 𝑣𝑥𝜕𝑦       (29) 

𝑚𝑥𝑦 = −
1

8
𝑝𝑙2 · (

𝑦

𝑥
−

4𝑥𝑦

𝑙2
) + 𝑐1      (30) 

The constant c1 is determined by requiring that mxy = 0 for y =0, i.e. c1 = 0: 

𝑚𝑥𝑦 = −
1

8
𝑝𝑙2 · (

𝑦

𝑥
−

4𝑥𝑦

𝑙2
)       (31) 

This is seen to give zero (constant) at the edge (x = ½l) and thus neither a distributed reaction nor corner 

forces will occur. This is as required. 

my is determined by the equilibrium equation of the plate: 

𝑑2𝑚𝑥

𝑑𝑥2 + 2
𝑑2𝑚𝑥𝑦

𝑑𝑥𝑑𝑦
+

𝑑2𝑚𝑦

𝑑𝑦2 = 𝑝       (32) 

where 
𝑑2𝑚𝑥𝑦

𝑑𝑥𝑑𝑦
= −

1

8
𝑝𝑙2 · (−

1

𝑥2 −
4

𝑙2)      (33) 

Leading to: 
𝜕𝑚𝑦

𝜕𝑦
= ∫ (−2 ·

1

8
𝑝𝑙2 · (

1

𝑥2 +
4

𝑙2) + 𝑝) 𝜕𝑦 + 𝑐2     (34) 

𝜕𝑚𝑦

𝜕𝑦
= −

1

4
𝑝𝑙2 · (

1

𝑥2 +
4

𝑙2) 𝑦 + 𝑝𝑦 + 𝑐2      (35) 

𝑚𝑦 = −
1

8
𝑝𝑙2 · (

1

𝑥2 +
4

𝑙2
) 𝑦2 +

1

2
𝑝𝑦2 + 𝑐2𝑦 + 𝑐3     (36) 

As boundary condition we have: 
𝜕𝑚𝑦

𝜕𝑦
(𝑦 = 0) = 0       (37) 

Which results in: 

𝑐2 = 0        (38) 

On the inclined boundary towards the region above at x = y must apply that my = 0, since my is constantly 

equal to zero in this region (in the same way as mx is constantly equal to zero in the shaded region), that is: 

𝑚𝑦(𝑥 = 𝑦) = −
1

8
𝑝𝑙2 · (

𝑦2

𝑦2 +
4𝑦2

𝑙2 ) +
1

2
𝑝𝑦2 + 𝑐3 = 0     (39) 

𝑐3 =
1

8
𝑝𝑙2        (40) 

Inserted: 

𝑚𝑦 =
1

8
𝑝𝑙2 · (1 −

𝑦2

𝑥2)       (41) 
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With respect to moment equilibrium of a section parallel to the x-axis through the center of the plate (y = 0) 

the following must apply: 

𝑚𝑜 · 𝑙 =
1

2

1

2
𝑙 · 𝑝

1

2
𝑙 · 𝑙       (42) 

𝑚𝑜 =
1

8
𝑝𝑙2        (43) 

Expressed by P: 

𝑃 = 𝑝 · 𝑙2        (44) 

𝑚𝑜 =
1

8
𝑃        (45) 

This is numerically the maximum moment that occurs (corresponding to the largest principal moment). 

4. Upper bound solution for concentrated load acting over a finite area 

To take into account the physical extent of the column which affects the foundation, the possibility to have a 

flat piece under the concentrated load is introduced. This is shown in figure 6, where the flat piece has an 

extent corresponding to a circular area with radius R0. By introducing this flat piece, a greater contribution to 

the internal work is obtained, as the angular rotation of the inclined pieces is increased for R0 > 0.  

R1 R1

C C

P

R R

mp

mp`=0 

dq
mpmp

Rdq

q

p 

Snit C-C

rdq

r
dr

R0 R0

D

mp

½D ½D

dA

 
Figure 6. Local mechanism with the extent of the flat piece at the concentrated load as a smaller than the 

extent of the concentrated area 
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External work: 

𝐴𝑦 = 𝑞 ∙ 𝜋(½𝐷)2 ∙ 𝛿 − ∫ ∫
𝑟−𝑅0

𝑅−𝑅0
𝛿 ∙ 𝑞 · 𝑟𝑑𝜃 ∙ 𝑑𝑟

2𝜋

0

½𝐷

𝑅0
− 𝑝 ∙ 𝜋𝑅0

2 ∙ 𝛿 − ∫ ∫
𝑅−𝑟

𝑅−𝑅0
𝛿 ∙ 𝑝 ∙ 𝑟𝑑𝜃 ∙ 𝑑𝑟

2𝜋

0

𝑅

𝑅0
  (50) 

Passer det stadig efter første led er korrigeret til ”½D” 

𝐴𝑦 =
1

3
𝑃𝛿 (

1

𝐷2 ·
1

𝑅−𝑅0
(3𝑅 · 𝐷2 − 𝐷3 − 4𝑅0

3) − 4 ∙
1

𝑅1
2 ∙ (𝑅2 + 𝑅 ∙ 𝑅0 + 𝑅0

2))   (51) 

Analogous to the review of foundations affected by a single force, the internal work is given by: 

𝐴𝑖 = 2𝜋 ∙
𝑅

𝑅−𝑅0
∙ 𝑚𝑝 · 𝛿       (52) 

As this is corrected with 
𝑅

𝑅−𝑅0
 to take the larger angular rotation for R0 > 0 into account. 

The solution is again determined by: 

𝐴𝑦 = 𝐴𝑖        (53) 

1

3
𝑃𝛿 (

1

𝐷2 ·
1

𝑅−𝑅0
(3𝑅 · 𝐷2 − 𝐷3 − 4𝑅0

3) − 4 ∙
1

𝑅1
2 ∙ (𝑅2 + 𝑅 ∙ 𝑅0 + 𝑅0

2)) = 2𝜋 ∙
𝑅

𝑅−𝑅0
∙ 𝑚𝑝 · 𝛿   (54) 

mp is isolated: 

𝑚𝑝 =
𝑃

2𝜋
(

1

3
·

1

𝑅𝐷2 (3𝑅 · 𝐷2 − 𝐷3 − 4𝑅0
3) −

1

3
∙

1

𝑅 𝑅1
2 (𝑅3 − 𝑅0

3))     (55) 

The expression which will be optimized with respect to R og R0: 

𝑚𝑝
𝑃

2𝜋

=
1

3
·

1

𝑅𝐷2 (3𝑅 · 𝐷2 − 𝐷3 − 4𝑅0
3) −

1

3

1

𝑅 𝑅1
2 (𝑅3 − 𝑅0

3)     (56) 

Numerical optimization shows that this mechanism is most critical for R0 = 0. With this, the internal work for 

the mechanism becomes identical to the internal work in the case of the load acting at a point. 

The mechanism corresponding to this is shown in figure 7. 
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R1 R1

A A

P

R R

mp

mp`=0 

dq
mpmp

Rdq

p 
Snit A-A

rdq

r
dr

½D ½D

q

 
Figur 7 Most critical mechanism 

R0 = 0 inserted in the expression gives: 
𝑚𝑝

𝑃

2𝜋

=
1

3
· (3 −

𝐷

𝑅
) −

1

3

𝑅2

𝑅1
2        (57) 

Optimizing with respect to R: 

𝑑(
𝑚𝑝

𝑃
2𝜋

)

𝑑𝑅
= 0       

𝑑(
𝑚𝑝

𝑃
2𝜋

)

𝑑𝑅
=

1

3
· (0 +

𝐷

𝑅2
) −

2

3
∙

𝑅

𝑅1
2      

The solution to this equation is: 

𝑅 = √𝐷𝑅1
2

2

3

         (58) 

Inserted into the equation for the solution is obtained: 

𝑚𝑝
𝑃

2𝜋

= 1 − √
𝐷2

4𝑅1
2

3
        (59) 

Figure 8 shows the relative bearing capacity for the most critical mechanism shown in Figure 7.  
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Figure 8 Relative capacity, that is 
𝑚𝑝

𝑃

2𝜋

 as function of D/R1 

Conclusion 

A lower and upper bound solution for a circular foundation affected by a point load has been outlined. The 

same result is obtained with the two approaches, whereby this is shown to be an exact solution. With the 

lower bound solution, it is seen that mq varies parabolically with a maximum value at the center and zero at 

the edge, and that mr is constantly equal to zero. 

Next, a lower bound solution has been found for a square foundation affected by a centrally located point 

load. The form of the moment distribution in the square foundation is seen to be similar to the moment 

distribution on the circular foundation. 

There is also an upper bound solution determined for a point foundation where the extent of the concentrated 

load is taken into account. With this approach, it can be seen that there is a possibility of a quite significant 

reduction of the dimensioning moment compared to the point foundation affected by a concentrated load 

without extension. 
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Appendix 1. Checking equilibrium equations for point load on circular foundation 

The equilibrium equations are used to check the equilibrium solution. 

1. 𝑣𝑟 · 𝑟 =
𝜕(𝑚𝑟·𝑟)

𝜕𝑟
−

𝜕𝑚𝑟𝜃

𝜕𝜃
− 𝑚𝜃  

2. 𝑣𝜃 =
1

𝑟

𝜕𝑚𝜃

𝜕𝜃
−

𝜕𝑚𝑟𝜃

𝜕𝑟
− 2

𝑚𝑟𝜃

𝑟
  

3. 
𝜕(𝑣𝑟·𝑟)

𝜕𝑟
+

𝜕𝑣𝜃

𝜕𝜃
= −𝑝 · 𝑟  

4. 
1

𝑟

𝜕2(𝑚𝑟·𝑟)

𝜕𝑟2 −
2

𝑟2

𝜕2(𝑚𝑟𝜃·𝑟)

𝜕𝑟𝜕𝜃
+

1

𝑟2

𝜕2𝑚𝜃

𝜕𝜃2 −
1

𝑟

𝜕𝑚𝜃

𝜕𝑟
= −𝑝  
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Due to rotational symmetry vq = mrq = 0. 

As a boundary condition we have that vr = mr = 0 at the edge. 

The shear force vr(r) is determined by 

𝑣𝑟 · 2𝜋𝑟 = −𝑝 · 𝜋𝑅2 + 𝑝 · 𝜋𝑟2  

and 𝑣𝑟 · 𝑟 is given by: 

𝑣𝑟 · 𝑟 = −
1

2
𝑝 · 𝑅2 +

1

2
𝑝 · 𝑟2  

𝑣𝑟 · 𝑟 = −
1

2
𝑝 · 𝑅2 (1 − (

𝑟

𝑅
)

2
)  

With 𝑃 = 𝜋𝑅2𝑝 inserted: 

𝑣𝑟 · 𝑟 = −
𝑃

2𝜋
(1 − (

𝑟

𝑅
)

2
)  

1. equilibrium equation is used to determine mr: 

𝑣𝑟 · 𝑟 =
𝜕(𝑚𝑟·𝑟)

𝜕𝑟
−

𝜕𝑚𝑟𝜃

𝜕𝜃
− 𝑚𝜃  

Inserted: 

−
𝑃

2𝜋
(1 − (

𝑟

𝑅
)

2
) =

𝜕(𝑚𝑟·𝑟)

𝜕𝑟
− 0 −

𝑃

2𝜋
(1 −  (

𝑟

𝑅
)

2
)  

𝜕(𝑚𝑟·𝑟)

𝜕𝑟
= 0  

𝑚𝑟 · 𝑟 = 𝑐1  

𝑚𝑟 =
𝑐1

𝑟
  

As mr must provide final values for 𝑟 → 0 must apply 𝑐1= 0, and therefor: 

𝑚𝑟 = 0  

2. equilibrium equation is immediately seen to be fulfilled: 

𝑣𝜃 =
1

𝑟

𝜕𝑚𝜃

𝜕𝜃
−

𝜕𝑚𝑟𝜃

𝜕𝑟
− 2

𝑚𝑟𝜃

𝑟
  

0 =
1

𝑟
· 0 − 0 − 2 · 0  

0 = 0    

3. equilibrium equation is seen to be satisfied: 
𝜕(𝑣𝑟·𝑟)

𝜕𝑟
+

𝜕𝑣𝜃

𝜕𝜃
= −(−𝑝) · 𝑟  

𝜕(𝑣𝑟·𝑟)

𝜕𝑟
+

𝜕𝑣𝜃

𝜕𝜃
= 𝑝 · 𝑟  

−
1

2
𝑞 · 𝑅2 (0 − 2

𝑟

𝑅2) = 𝑝 · 𝑟  

𝑝 · 𝑟 = 𝑝 · 𝑟  

4. equilibrium equation is seen to be satisfied: 
1

𝑟

𝜕2(𝑚𝑟·𝑟)

𝜕𝑟2 −
2

𝑟2

𝜕2(𝑚𝑟𝜃·𝑟)

𝜕𝑟𝜕𝜃
+

1

𝑟2

𝜕2𝑚𝜃

𝜕𝜃2 −
1

𝑟

𝜕𝑚𝜃

𝜕𝑟
= −(−𝑝)  

1

𝑟
· 0 −

2

𝑟2 · 0 +
1

𝑟2 · 0 −
1

𝑟
·

𝑃

2𝜋
(0 −  

2𝑟

𝑅2) = 𝑝  

𝑃

𝜋𝑅2 = 𝑝  

𝑝 = 𝑝  

The solution is thus seen to be in equilibrium. For a circular point foundation affected by a centrally located 

point load: 
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𝑚𝜃(𝑟) =
𝑃

2𝜋
(1 −  (

𝑟

𝑅
)

2
)  

𝑚𝑟(𝑟) = 0   

𝑣𝑟 = −
𝑃

2𝜋𝑟
(1 −

𝑟2

𝑅2)  

 

 

 

 



 



 

 

Danish Society for Structural Science and Engineering 
 

Requests for membership of the society are submitted to one of the board members: 

Kåre Flindt Jørgensen, Chairman of the Board  

NCC Danmark. Mail: karjor@ncc.dk 

Andreas Bollerslev, Vice Chair 

Niras. Mail: anbo@niras.dk 

Kirsten Riis, Secretary  

Vejdirektoratet. Mail: kiri@vd.dk 

Mikkel Christiansen, Cashier 

AB Clausen. Mail: dsby.mc@gmail.com 

Gunnar Ove Bardtrum, Board member 

BaneDanmark. Mail: goba@bane.dk 

Jesper Pihl, Board member 

Cowi. Mail: jepi@cowi.dk 

Dennis Cornelius Pedersen, Board member 

MOE. Mail: dcpe@moe.dk 

Jens Henrik Nielsen, Board member 

DTU. Mail: jhn@byg.dtu 

The purpose of the society is to work for the scientific development of structural mechanics - 

both theory and construction of all kinds of load-bearing structures - promote interest in the 

subject, work for a collegial relationship between its practitioners and assert its importance to 

and in collaboration with other branches of engineering. The purpose is sought realized 

through meetings with lectures and discussions as well as through the publication of the 

Proceedings of the Danish Society for Structural Science and Engineering. 

Individual members, companies and institutions that are particularly interested in structural 

mechanics or whose company falls within the field of structural mechanics can be admitted 

as members. 

 


