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Required anchorage length of reinforcement in 

circular foundation subjected by a centrally 

located normal force and supported by a uniformly 

distributed reaction 

Lars German Hagsten1 

 

 

 

Introduction 

In this article, the maximum anchorage length for the reinforcement in the bottom of a circular point 

foundation is determined to avoid having to use bent-up reinforcement. The work presented in this 

article is a continuation of the work presented in [1], where an exact solution is presented for a point 

foundation affected by a column reaction of finite extent. 

When determining the maximum anchorage length for foundations affected by moments, it is 

assumed that the foundation is provided with orthotropic reinforcement with a constant degree of 

reinforcement in all sections. First, the required anchorage length for the reinforcement in a point 

foundation affected by centrally located normal force acting as a point load is examined. Next, the 

necessary anchorage length for a point foundation affected by a centrally located normal force 

acting over a finite area is examined. 

The fact that the anchoring of the reinforcement is modeled as linearly growing from the end of the 

reinforcement means that the foundation will appear anisotropically reinforced near the edge. This 

matter is also addressed. 

 

Point foundation subjected bya centrally located normal force acting as a point load 

Cf. [1] the moment distribution in a circular foundation affected by a point load can be expressed 

by: 

mr  = 0         (1) 

𝑚𝜃 =
𝑃

2𝜋
(1 − (

𝑟

𝑎
)

2

)          (2) 

mr = 0         (3) 

                                                           
1 Aarhus University, Value Engineering ApS 
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The point foundation subjected by a point load, P, is shown in Figure 1. 
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Figure 1 Circular foundation subjected by a point load 

 

Since the study is about assessing the necessary anchoring capacity with homogeneous, 

orthogonally placed reinforcement at the bottom of the foundation, the moments are rewritten as mx, 

my and mxy, see appendix A: 

𝑚𝑥 = 𝑚𝑟 · cos2 𝜃 + 𝑚𝜃 · sin2 𝜃 + 2𝑚𝑟𝜃 · sin 𝜃 · cos 𝜃     (4) 

𝑚𝑦 = 𝑚𝑟 · sin2 𝜃 + 𝑚𝜃 · cos2 𝜃 − 2𝑚𝑟𝜃 · sin 𝜃 · cos 𝜃     (5) 

𝑚𝑥𝑦 = 𝑚𝑟 · sin 𝜃 · cos 𝜃 − 𝑚𝜃 · sin 𝜃 · cos 𝜃 + 𝑚𝑟𝜃(sin2 𝜃 − cos2 𝜃)    (6) 

With (1) - (3) inserted in (4) - (6) we have: 

𝑚𝑥 =
𝑃

2𝜋
(1 − (

𝑟

𝑎
)

2

) · sin2 𝜃       (7) 

𝑚𝑦 =
𝑃

2𝜋
(1 − (

𝑟

𝑎
)

2

) · cos2 𝜃       (8) 

𝑚𝑥𝑦 = −
𝑃

2𝜋
(1 − (

𝑟

𝑎
)

2

) · sin 𝜃 · cos 𝜃      (9) 

Since for 𝑥 ≥ 0 and 𝑦 ≥ 0  it holds that: 

𝜃 = atan (
𝑦

𝑥
)       (10) 

𝑟 = √𝑥2 + 𝑦2       (11) 

We have by insertion in (7) - (9): 

𝑚𝑥 =
𝑃

2𝜋
(1 −

𝑥2+𝑦2

𝑎2
) · sin2 (atan (

𝑦

𝑥
))      (12) 
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𝑚𝑦 =
𝑃

2𝜋
(1 −

𝑥2+𝑦2

𝑎2 ) · cos2 (atan (
𝑦

𝑥
))      (13) 

𝑚𝑥𝑦 = −
𝑃

2𝜋
(1 −

𝑥2+𝑦2

𝑎2 ) · sin (atan (
𝑦

𝑥
)) · cos (atan (

𝑦

𝑥
))   (14) 

The principles for dimensional moments msx and msy in the direction of the x- and y-axis, 

respectively, are given by [2]: 

𝑚𝑠𝑥 = 𝑚𝑥 +
1

𝜒
|𝑚𝑥𝑦|       (15) 

𝑚𝑠𝑦 = 𝑚𝑦 + 𝜒|𝑚𝑥𝑦|       (16) 

Where  expresses the slope of the inclined concrete pressure, c, from the torsional moment, that is 

 = cotc. 

Since the foundation is equally reinforced in the x and y directions, the most optimal utilization is 

obtained by having the design moment be the same in the two directions. This can be achieved by 

using a value ofthat ensures this: 

𝑚𝑠𝑥 = 𝑚𝑠𝑦        (17) 

With expressions for msx and msy inserted: 

𝑚𝑥 +
1

𝜒
|𝑚𝑥𝑦| = 𝑚𝑦 + 𝜒|𝑚𝑥𝑦|      (18) 

From this expression,  can be determined: 

0 = 𝜒2|𝑚𝑥𝑦| + (𝑚𝑦 − 𝑚𝑥) · 𝜒 − |𝑚𝑥𝑦|     (19) 

0 = 𝜒2 +
(𝑚𝑦−𝑚𝑥)

|𝑚𝑥𝑦|
· 𝜒 − 1       (20) 

That is: 

𝜒 = −
1

2

(𝑚𝑦−𝑚𝑥)

|𝑚𝑥𝑦|
+

1

2
√

(𝑚𝑦−𝑚𝑥)
2

𝑚𝑥𝑦
2 + 4      (21) 

With expressions for mx, my and mxy inserted: 

𝜒 = −
1

2

(cos2(𝜃)−sin2(𝜃))

sin(𝜃)·cos(𝜃)
+

1

2
√

(cos2(𝜃)−sin2(𝜃))2

(sin(𝜃)·cos(𝜃))2 + 4     (22) 

The projecting factor in (12) - (14) is evaluated:  

𝜔𝑥 = sin2 (atan (
𝑦

𝑥
))      (23) 

𝜔𝑦 = cos2 (atan (
𝑦

𝑥
))      (24) 

𝜔𝑥𝑦 = sin (atan (
𝑦

𝑥
)) · cos (atan (

𝑦

𝑥
))     (25) 

for θ = atan (
𝑦

𝑥
). 

The variation is the same in the x and y directions respectively. Based on (17), the most critical 

angle for msy is found in the interval 0 ≤  𝜃 ≤  𝜋/4.   

The moment is therefore greatest for  → 0, where mx and my acts alone. 
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Figure 2. Examination of the variation of mx, my and mxy as a function of  

 

In the x direction, the variation for msx is shown in figure 3 with functions for y/a from 0.1 – 0.9. 

 
Figure 3 msx as a function of x/a for different values of y/a 

The most critical in terms of anchoring is seen for  → 0, as shown in Figure 2, and at the edge for 

x → a, as shown in Figure 3. 

With the expression for  (22) inserted into the expression for msy (16): 

𝑚𝑠𝑦 = 𝑚𝑦 + 𝜒|𝑚𝑥𝑦| =
𝑃

2𝜋
(1 −

𝑥2+𝑦2

𝑎2 ) · (cos2(𝜃) − (
1

2

(cos2(𝜃)−sin2(𝜃))

sin(𝜃)·cos(𝜃)
+

1

2
√

(cos2(𝜃)−sin2(𝜃))2

(sin(𝜃)·cos(𝜃))2 + 4) · sin(𝜃) · cos(𝜃))  (26) 

This can be reduced to: 

𝑚𝑠𝑦 =
𝑃

2𝜋
(1 −

𝑥2+𝑦2

𝑎2 )       (27) 

Analog expression is available for msx: 

𝑚𝑠𝑥 =
𝑃

2𝜋
(1 −

𝑥2+𝑦2

𝑎2 )       (28) 
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The variation is seen to be identical in the x and y directions. 

The increments in the y-axis direction of msy is given by: 

𝑑𝑚𝑠𝑦

𝑑𝑦
= −

𝑃𝑦

𝜋𝑎2       (29) 

The biggest increase is seen to be for y = a: 

(
𝑑𝑚𝑠𝑦

𝑑𝑦
)

𝑚𝑎𝑥
= −

𝑃

𝜋𝑎
       (30) 

With a constant internal moment arm, z, a necessary anchoring capacity per length unit on: 

(
𝑑𝑇

𝑑𝑥
)

𝑚𝑎𝑥
=

𝑃

𝜋·𝑎·𝑧
       (31) 

The maximum moment gives a tensile force of: 

𝑇𝑚𝑎𝑥 =
𝑚𝜃

𝑧
=

𝑃

2𝜋·𝑧
       (32) 

The distance from the edge, lb,max, where full capacity must be built up with the necessary increment 

described by (
𝑑𝑇

𝑑𝑥
)

𝑚𝑎𝑥
, assuming a linear build-up of the force in the reinforcement 

𝑇𝑚𝑎𝑥 = 𝑙𝑏,𝑚𝑎𝑥 · (
𝑑𝑇

𝑑𝑥
)

𝑚𝑎𝑥
       (33) 

By equalizing (32) and (33) we have: 

𝑙𝑏,𝑚𝑎𝑥 =
𝑃

2𝜋·𝑧
𝑃

𝜋·𝑎·𝑧

=
1

2
𝑎       (34) 

This result means that the anchorage length must be less than or equal to half the radius of the 

foundation for a point foundation subjected to a point load. 

 

 
Figur 4 Illustration of the maximum anchorage length 

As can be seen, the distance is independent of the magnitude of the maximum moment. 
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Point foundation subjected by centrally located column with finite area 

Figure 5 shows a point foundation with radius, a, that is subjected by a load from a column with a 

diameter of D. 

a a

Section A-A

p

q

½D ½D

R R

½P

½P

e2

e1

M

m

m

mr

A A

 
Figure 5 Point foundation with radius a that is affected by a column with a diameter of D 

The maximum moment is determined cf. [1] by: 

𝑚𝜃 =
𝑃

2𝜋
(1 −  √

𝐷2

4𝑎2

3
)       (35) 

Again, the maximum allowable anchorage length can be determined by: 

𝑇𝑚𝑎𝑥 = 𝑙𝑏,𝑚𝑎𝑥 · (
𝑑𝑇

𝑑𝑥
)

𝑚𝑎𝑥
       (36) 

The increase at the edge is identical to the case where the foundation is considered to be affected by 

a point load, i.e: 

(
𝑑𝑇

𝑑𝑥
)

𝑚𝑎𝑥
=

𝑃

𝜋·𝑎·𝑧
       (37) 

Tmax is again determined based on the moment: 

𝑇𝑚𝑎𝑥 =
𝑚𝜃

𝑧
=

𝑃

2𝜋·𝑧
(1 −  √

𝐷2

4𝑎2

3
)      (38) 

Maximum anchoring length to avoid bent reinforcement: 
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𝑙𝑏,𝑚𝑎𝑥 =
𝑇𝑚𝑎𝑥

(
𝑑𝑇

𝑑𝑥
)

𝑚𝑎𝑥

=
1

2
(1 −  √

𝐷2

4𝑎2

3
) 𝑎      (39) 

 
Figur 5. Tsx/(P/2pa) as function of x/a, shown for D/a = 0,1 

 

For later comparison, the maximum anchorage length is shown specifically for y/a = 0.4 based on 

the same approach with a slope of 2x/a, see figure 6. 

 

Figure 6 Tsx/(P/2pa) as function of x/a, shown for D/a = 0,1 and y/a = 0.4 

 

If it is assumed that anchored/bent-up reinforcement is not used at the edge of the point foundation, 

the moment capacity decreases towards the edge. Since the anchoring is assumed to vary linearly, it 

is correspondingly assumed that the moment capacity decreases linearly at a distance from the edge 

corresponding to the anchoring length in both directions. 
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This is illustrated in Figure 7. A point C is considered which is situated at a distance from the edge 

which is less than the anchoring length. Since the distance from the edge is different in the two 

directions, this also means that the moment capacity at this point is different in the two directions. 

 

A A

B
B

C

my

my,C,cap

mx mx,C,cap

my,cap(=mx,cap)

mx,cap(=my,cap)

lb

lb

section A-A

section B-B

yC

xC

a
 

Figure 7 Circular foundation with orthogonal reinforcement and decreasing moment capacity at the edge 

 

The optimal utilization of the reinforcement in a zone closer than the anchorage length from the 

edge is achieved by taking into account the varying moment capacity. The relationship between the 

moment capacities in the two directions can be expressed by the inverse of the relationship between 

the distances to the edge in the two directions. (17) is thus changed to: 

𝑚𝑠𝑦 =
√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
𝑚𝑠𝑥       (40) 

With expressions for msx and msy inserted: 

𝑚𝑦 + 𝜒|𝑚𝑥𝑦| =
√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
𝑚𝑥 +

√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
∙

1

𝜒
|𝑚𝑥𝑦|     (41) 

From this expression,  can be determined: 

0 = 𝜒2|𝑚𝑥𝑦| + (𝑚𝑦 −
√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
𝑚𝑥) · 𝜒 −

√𝑎−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
∙ |𝑚𝑥𝑦|    (42) 
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0 = 𝜒2 +

(𝑚𝑦−
√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥

∙𝑚𝑥)

|𝑚𝑥𝑦|
· 𝜒 −

√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
     (43) 

meaning: 

𝜒 = −
1

2

(𝑚𝑦−
√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥

·𝑚𝑥)

|𝑚𝑥𝑦|
+

1

2

√
(𝑚𝑦−

√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥

𝑚𝑥)

2

𝑚𝑥𝑦
2 + 4 ·

√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
    (44) 

That is, with this value of , msx and msy corresponding to (15) and (16) are determined in the zone 

which is located within a distance from the edge of the point foundation less than the anchorage 

length. Although the point foundation is isotropically reinforced, it thus behaves at the edge as 

anisotropically reinforced with a linearly decreasing moment capacity towards the edge in each of 

the two directions. 

With the formula for  given by (21)/(22), the orientation of the inclined compression from the 

torsional moment is found in the areas where the reinforcement in both directions is fully anchored 

(at the center of the foundation). Formula (43) gives the orientation in the areas where the 

reinforcement in both directions are not fully anchored. In addition there are the two cases where 

only the reinforcement in one direction is fully anchored while the reinforcement in the other 

direction is not fully anchored. 

Compared to formula (44), the term 
√𝑎2−𝑥2−𝑦

√𝑎2−𝑦2−𝑥
 must be replaced by respectively: 

√𝑎2−𝑥2−𝑦

𝑙𝑏
 for √𝑎2 − 𝑥2 − 𝑦 >  𝑙𝑏,𝑚𝑎𝑥 ∧ √𝑎2 − 𝑦2 − 𝑥 ≤ 𝑙𝑏,𝑚𝑎𝑥   (45) 

𝑙𝑏

√𝑎2−𝑦2−𝑥
 for √𝑎2 − 𝑥2 − 𝑦 ≤  𝑙𝑏,𝑚𝑎𝑥 ∧ √𝑎2 − 𝑦2 − 𝑥 > 𝑙𝑏,𝑚𝑎𝑥   (46) 

With this approach, Tsx/(P/2pz) shown in figure 5 changes to the variation shown in figure 8. The 

variation is shown for D/a = 0.1 

 

Figure 8 Tensile force taking into account the anisotropic behavior near the edge 
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Figure 9 shows a line with a slope of 1.43 for y/a = 0.4, which is the ratio of y/a that is most critical 

with respect to anchoring. It can be seen that this provides sufficient anchoring without 

anchored/bent-up reinforcement. This is illustrated in figure 9 for D/a = 0.1, and is as a very good 

approximation constant for different values of D/a. 

 

Figure 9 Illustration of the increased maximum anchorage length taking into account the anisotropic 

behavior near the edge 

 

For comparison, the dashed line shows the extent of the required anchoring length without using the 

modified value of  at the edge (see also figure 6). 

Maximum anchoring length to avoid bent-up reinforcement is thus changed from (38) to: 

𝑙𝑏,𝑚𝑎𝑥 =
𝑇𝑚𝑎𝑥

(
𝑑𝑇

𝑑𝑥
)

𝑚𝑎𝑥

=
1

1,43
· (1 −  √

𝐷2

4𝑎2

3
) 𝑎 ≈ 0,7 · (1 −  √

𝐷2

4𝑎2

3
) 𝑎      (47) 

𝑙𝑏,𝑚𝑎𝑥 = 1,4 ·
1

2
(1 − √

𝐷2

4𝑎2

3
) 𝑎        (48) 

By taking into account the anisotropic conditions at the edge, an increase og 40% in the maximum 

anchorage length for the circular foundation is thus obtained. 

 

Concluding remarks 

This article establishes the maximum anchorage length for the reinforcement in the bottom side of a 

circular point foundation, with the aim of avoiding the use of bent-up reinforcement. Assuming that 

the foundation is equipped with orthotropic reinforcement with a constant degree of reinforcement 

in all sections, the necessary anchorage length for the reinforcement in a point foundation subjected 

by a centrally located normal force acting as a point load is first investigated. The necessary 

anchorage length for a point foundation subjected by a centrally located normal force acting over a 

finite area is then investigated. The modeling of the anchoring of the reinforcement as linearly 
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growing from the end of the reinforcement means that the foundation will appear anisotropically 

reinforced near the edge, which is also treated in the article. The maximum anchorage length to 

achieve sufficient anchorage of the reinforcement is thus given by formula (48). 
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Appendix A. Transformation formulas 



mr

mrm

mr
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r
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p


P
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mr
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
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Figure A.1 

𝑚𝑥 = 𝑚𝑟 · cos2 𝜃 + 𝑚𝜃 · sin2 𝜃 + 2𝑚𝑟𝜃 · sin 𝜃 · cos 𝜃     (A.1) 

𝑚𝑦 = 𝑚𝑟 · sin2 𝜃 + 𝑚𝜃 · cos2 𝜃 − 2𝑚𝑟𝜃 · sin 𝜃 · cos 𝜃     (A.2) 

𝑚𝑥𝑦 = 𝑚𝑟 · sin 𝜃 · cos 𝜃 − 𝑚𝜃 · sin 𝜃 · cos 𝜃 + 𝑚𝑟𝜃(sin2 𝜃 − cos2 𝜃)    (A.3) 

with  

𝜃 = arctan (
𝑦

𝑥
)         (A.4) 

𝑚𝑥 = 𝑚𝑟 · cos2 (arctan (
𝑦

𝑥
)) + 𝑚𝜃 · sin2 (arctan (

𝑦

𝑥
)) + 2𝑚𝑟𝜃 · sin (arctan (

𝑦

𝑥
)) · cos (arctan (

𝑦

𝑥
))   (A.5) 

𝑚𝑦 = 𝑚𝑟 · sin2 (arctan (
𝑦

𝑥
)) + 𝑚𝜃 · cos2 (arctan (

𝑦

𝑥
)) − 2𝑚𝑟𝜃 · sin (arctan (

𝑦

𝑥
)) · cos (arctan (

𝑦

𝑥
))   (A.6) 

𝑚𝑥𝑦 = (𝑚𝑟 − 𝑚𝜃) · sin (arctan (
𝑦

𝑥
)) · cos (arctan (

𝑦

𝑥
)) + 𝑚𝑟𝜃 (sin2 (arctan (

𝑦

𝑥
)) − cos2 (arctan (

𝑦

𝑥
)))   (A.7) 
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