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Strain Capacity of Reinforced Concrete Disks
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Jakob Fisker!

Abstract

The yield condition for disks is a very rational method for designing concrete disks and for determining the
strength of disks for arbitrary load combinations. When determining the yield condition for disks, use is made
of an ideal plastic material modelling.

In makes sure that the corresponding strain capacity is sufficient, the ideal plastic material modelling is
replaced with a bilinear stress strain curve for the reinforcement, whereby a clear connection between strain
and tension is established.

Due to the interaction between concrete and reinforcement, the strain capacity of the embedded reinforcement
is smaller than the strain capacity of the bar reinforcement.

General limits for the choice of anisotropy ratio of the reinforcement so that sufficient strain capacity in the
reinforcement is present by any combinations of normal and shear stresses is presented. Limits are set for the
choice of maximum anisotropy ratio for three different reinforcement types.

By adding limits on the maximum allowable degree of anisotropy as function of the lowest degree of
reinforcements to the application of the yield condition, it is ensured that the strain capacity of the reinforcing
is sufficient for any combination of the stresses obeying the yield condition.

Introduction

For disks subjected by shear, z, the yield condition is given by:

|Txy| < \[(ftx - Jx)(fty - Uy) (1)

! Aarhus University
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Any combination of o, oy and 7y, that satisfies Equation 1 can be carried by the disk. fy is the tensile
capacity in the direction of the x-axis just as fy is the tensile capacity in the direction of the y-axis. The yield
condition was derived by MPN [] and is incorporated in EC2 [].

The yield condition has the origin in the theory of plasticity and is based on a rigid plastic material
modelling. The modelling has shown being strong in predicting the capacity. In Figure 1 is seen a

comparison between tests and modelled capacity.
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Figure 1 Comparison between model and shear tests

As the yield condition is based on a rigid plastic material modelling, no information is available on the
strains in neither concrete or reinforcement whereby no information is available on whether the strain
capacity of the materials is sufficient.

In order to achieve such information on the strain state a bilinear material modelling of the reinforcement is
adopted and replacing the rigid plastic modelling of the reinforcement.

Kauffmann [] has made a corresponding investigation on the strain capacity of the concrete. Focus in this
paper is on the strain capacity of the reinforcement.

The yield condition is developed under the assumptions of (i) no tensile capacity of the concrete (ii)
orthogonal reinforcement (iii) shear is carried by a combination of diagonal compression in concrete being in
equilibrium with tension in the reinforcement and/or applied normal stresses (iv) a rigid plastic material

modelling.
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Based on the first three assumptions and with no matter of the material modelling the stress state in the

material is given by:

o, = |Txy| (tan 6+ ﬁ) 2
o = (0 + ) ®
Osy = (Jy + |Txy| tan 9)% (4)

Where o is the compressive stress in the concrete, oz and oy are the stresses in the reinforcement
respectively in the x- and y-direction. px and py are the geometrical degree of reinforcement in the x- and y-
direction. @is the orientation of the diagonal compression stress in concrete, see Figure 2. For known
geometry, degrees of reinforcement and applied loads (ox, oy and ), the only unknown parameter is the
orientation of the diagonal compression stress, 6.
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Figure 2 a) lllustration of yield condition. b) Geometry, layout of reinforcement and stresses at the boundaries

The magnitude of the inclination is a function of the ratio between the applied stresses and on the ratio
between the degree of reinforcement in the two directions. For pure shear the compression in the concrete
orient towards the largest degree of reinforcement and due to equilibrium leading to the largest forces in this
direction. But at stress and strain level, the largest stresses and strains will be in the reinforcement in the

direction with the smallest degree of reinforcement. This is due to the fact that the ratio between the forces in
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the two direction caused by the inclination of the compression in the concrete is smaller than the ratio
between the degree of reinforcement in the two directions. At the load level at which yielding in the
reinforcement in the direction of the smallest degree of reinforcement is initiated, the inclination of the
compression in the concrete is further oriented towards the direction with the largest degree of
reinforcement. Regardless of that, the magnitude of the strain in the direction of the smallest degree of
increases most and thereby becomes crucial with respect to strain capacity. Again this is due to the fact that
the ratio between the forces in the two direction is smaller than the ratio between the degree of reinforcement
in the two directions.
Under the assumption of a rigid plastic material modeling and yielding in the reinforcement in both
directions @is found by setting o = sy = fy and solving equation (3) and (4) with respect to 6.
In a pure elastic modeling, @is found by minimizing the strain energy in the disk.
In the case of a bilinear material modeling the non-conservative contribution from the inelastic behavior
must simultaneously by subtracted in the minimization of the potential energy [LGH].
The average strain in an embedded reinforcement bar is affected by tension stiffening. For small degrees of
reinforcement the effect of tension stiffening becomes most significant. That means that the strain capacity,
seen as the average strain level in the reinforcement when f, is reached in the reinforcement in the cracks, is
smallest for the smallest degrees of reinforcement. This can be realized as smaller degrees of reinforcement
leads to larger crack distances.
As both crack distances and bond strength between concrete and reinforcement is a function of concrete
strength, the restriction may also include information on the concrete strength.
The restrictions can therefore be expected to be a function of (i) the smallest degree of reinforcement (ii) the
degree of anisotropy and (iii) the concrete strength.
The aim of this work are to:

1) - Set up a general expression in order to determine the orientation of the diagonal stress in the

concrete and thereby be able to determine the actual stresses/strains in the reinforcement.
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2) - For different kind of ductility classes of the reinforcement to determine the maximum allowable
degree of anisotropy as function of the lowest degree of reinforcements.

By adding limits on the maximum allowable degree of anisotropy as function of the lowest degree of
reinforcements to the application of the yield condition, it is ensured that the strain capacity of the
reinforcing is sufficient for any combination of the stresses obeying the yield condition given by formula (1).
The aim of this paper is therefor to examine how the application of the yield condition shall be
complemented with restrictions ensuring sufficient strain capacity.
The approach is initially illustrated by two test reported by Vecchio and Collins [1982]. The disks were both
affected by pure shear, zy (ox = oy = 0).
The disks had degrees of reinforcement given by respectively ooy (= pmax/ omin) = 0.0181/0.0072 = 2.5 and
odpy =0.0181/0.0032 = 5.7. As an outset both disks were uncracked whereby the diagonal concrete stress,
o, is oriented at an angle of 45°. At a certain load level the disks will crack.
For a load larger than the cracking load, and less than the load level at which the reinforcement yields, the
orientation of the stress in the concrete will be determined by minimizing the strain energy. Hereby it is
found that the orientation of the stress in the concrete will change so the stress is oriented towards the
direction with the largest degree of reinforcement. That is, @is reduced for load levels (here expressed by
Try) higher than the cracking load. By analyzing the stresses in the reinforcement at this load level, it is seen
that the stresses are largest in the direction with the lowest degree of reinforcement.
By further uploading, yielding in the direction with the lowest degree of reinforcement will be reached at a
certain load level. From the load level at which the disk crack and up to the load level where yielding occurs,
the orientation of the stress in the concrete is constant and consequently the stress in the reinforcement is
proportional to the load level. At loading above the load level at which yielding occurs, the reinforcement in
the direction of the lowest degree of reinforcement will yield and the inclination of the compression in the
concrete will further orientate towards the direction with the largest degree of reinforcement.
The modeled inclination of the principal stress in the concrete and the maximum strain in the reinforcement

is sketched in figure 3 as function of the applied load for both disks.
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Figure 3 Modeled inclination of the principal stress in the concrete and the maximum strain in the reinforcement for PV
18 ad PV19

In PV19, the ratio between the max. strain in the reinforcement and the yield strain is 3.1. In PV18, the ratio
between the max. strain in the reinforcement and the yield strain is 5.5. It is a general observation, that larger

ratios of o/ py leads to larger needed strain capacities of the reinforcement in order to reach the capacity given

by (1).

2 Theory

2.1 Equilibrium for inelastic materials

A state of equilibrium can generally be determined by minimizing the potential energy. This ensures that both
the static and geometric conditions are fulfilled. For statically indeterminate systems made of linear elastic
materials, equilibrium is found by minimizing the elastic energy. For systems with materials exhibiting inelastic
behavior, equilibrium can be determined by minimizing the potential energy taking into account energy
dissipation [2017].

The potential energy is determined as the sum of the elastic energy stored in the materials, /Ziasic Subtracted
the product of the external forces and their displacements, 7. Owing to the inelastic material behavior, the
system also loses mechanical/potential energy, Aw. This part must subtracted the potential energy, 71

= Aw = Meqseic — Ip

IT = Meigstic — Ip + Aw ®)

Equilibrium is the determined by requiring:

an _

an_ (6)
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In order to be able to express the different contributions to the corrected potential energy, knowledge of
constitutive relations as well as the displacements of the boundaries is heeded.

2.2 Material modeling

2.2.1 Concrete

The concrete is assumed to have no tensile strength, and in regards to compression, a linear elastic-ideal
plastic behavior is assumed. The following relations between stresses and strains are applied:

_ (ecE. fore, < &g
% = {vfc for e, = €, )

E. is taken as the average secant-modulus and v is the effectiveness factor. Both are determined according

to Eurocode 2 [2008]:

v=06 (1 - ZT’;) ®)

E =22(5)" f = f+ 8 ©
2.2.2 Naked and embedded Reinforcement

The naked reinforcement is modelled using a bilinear stress-strain curve, as shown in Figure 5a.

Due to the bond between concrete and reinforcement, the strain varies along the embedded reinforcement.
Peak steel strains are obtained at the position of cracks, and in-between cracks the strains are reduced owing
to the restraining action of bond.

Different approaches in regards to modelling of reinforcement bond has been proposed [1998], [2007], [2011].

In the present approach, a slightly corrected version the Tension Chord Model, proposed by Marti et al. [1998]

is adopted. According to the Tension Chord Model, the crack distance in reinforced concrete bar is given as:

Spm = 1.332% (10)

Figure 4 shows a comparison between measured crack distances and the crack distance determined by

formula (10) as a function of the degree of reinforcement.
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Figure 4 Comparison between measured crack distances and the crack distance determined by the Tension Chord

Model as function of ps
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Figure 5 a) Model of embedded and bar reinforcement b) Variation of strains in embedded reinforcement

Locally, in a zone near the cracks visible at the surface, small conical cracks [1971] develops, and, as a
consequence, a zone with no bond develops near the cracks. The influence of such local effects has also been
recognized by Leoanhardt []. In an effort to take the effect of such local zones with no/limited bond into account
Jokela [1986] set up an expression for the length of the debonded zone near the cracks. This is given by:

1 o5
ldeb =3 (1 + m) B (1)

The aim of the present investigation is to model the case where the stresses in the cracks has reached f,.
When evaluating lqen the reinforcement stress will be taken as f, as a reasonable simplification.

Next to the debonded zones, reinforcement and concrete are interacting in accordance to the Tension Chord
Model. Accordingly, the determination of bond stresses is done using two different expressions; one for case

where the reinforcement behaves elastically, z, and one for case where the reinforcement is yielding, z:
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(1o =0.6£>"
T(x) = {Ty _ 032" (12)

The strain capacity of the embedded reinforcement can be determined as the average strain in the
reinforcement in the event that the ultimate strain of the reinforcement is reached in the cracks.
The strain capacity can be determined as the average strain in the reinforcement over a distance eual to the

distance between two cracks, Sim:
_ _ 1 YaSrm
Es,capacity = Es,average = E 2 fo gs(x)dx (13)

An expression for the variation of the strain in the reinforcement in the neighborhood of a crack (here x =0 at

the crack) will accordingly be divided into three parts:

IA

(Eu for x

e(x) = J%(fu —5—%(x—ldeb)> for lgep < x
(E (fy G l,,)) forl, < x

ldeb

IA

b (14)

Ip is the distance from the crack to the location where os = fy. This distance is given by:
_ (fu-fy)ﬂs _ (fu‘fy)ﬂs
b = a1y, t laen = 41y, (1 + 100) (15)

Inserting (14) in (13) leads to the following expressions for saverage depending on the length of the plastic zone.

If Y2Sm > Ip:
1 4T 2T

L guldeb + E_Z<(fu {+—= — ldeb) (lp - ldeb) - g_sy(lpz - ldeb2)>

Faverage = QZ 4te 2te (1 . 5 2 (162)
(fy + 2 (Y5 — 1) _TS(ZS“" ~1, ))

If Y2Sm < Ip:

1 4T 2T
Eaverage = a 2 (Euldeb + E_12 ((f ( +-= ldeb) (/Zsrm ldeb) - ¢_5y (i Srm2 - ldebz))> (16b)

In Figure 5b, an example of the variation of the reinforcement strains is shown, in which the meaning of gaverage
is also illustrated. In Figure 5a, the bold, fully drawn line shows the modeled stress-strain curve of an embedded
reinforcement bar. It is this stress-strain curve that is to be applied in the following. By refereeing to the bold
line in Figure 5a, the corresponding reinforcement stresses can be determined as:

o = &E; foreg <e, 17
S

{+&E,fores > ¢,
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What regards the strains in the concrete, only knowledge of the principal (compressive) strain, at an angle 6
with respect to the x-axis, is available. The principal concrete strain perpendicular to this compressive strain is
not known. It is known that it is a positive strain, but the magnitude is unknown. Accordingly, the size of the
strain in the concrete is also unknown in other sections a priori. The average strain in the disk in the x-y
direction is identical to the average strain in the reinforcement in these directions. Hence, the strains in the
disk are known in the directions of the x and y axis. Knowledge of these three strains is sufficient to determine
the displacements at any point in the disk, as well as on the boundaries.

2.3 Displacements on the boundaries

The potential energy also includes the contribution from the external stresses, whereby knowledge of the
displacements on the boundaries are necessary. On basis of the previously mentioned known strains, an
expression for the boundary displacements can be derived. For a disk, or piece of a disk, with in-plane

dimensions h-b, the displacements in points F and G, can be found (see appendix A)

Point F: u(x, y) = u(0, %h) = (ﬁﬁ heg, h) (18)
Point G: u(x,y) = u(¥b,0) = G Eox b,% (ec + ssy)tane . b) (19)

Using these expressions, the loss in potential energy owing to the displacement of external forces can be
determined.

2.4 The corrected potential energy

Each of the three parts included in the corrected potential energy is illustrated on Figure 6. It is assumed that
yielding in the reinforcement in the y-direction is initiated first. Hence, the reinforcement in the direction of the

x-axis as well as the concrete remains in the elastic range.
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Figure 6 Illustration of elastic energy and lost mechanical energy
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2.4.1 The elastic energy
The elastic energy per unit volume of the disk is given by:

1 1 105y°
Helastic - Ea-cgc + Ea-sxgsxpx + E Es py

2.5.2 The loss of potential energy from the external stresses

(20)

Based on expressions (18) an (19) the loss of potential energy per unit of volume (V = h-b-t) owing to the

external forces (i.e, the resultants of #y, ox and oy) can be expressed as:

1 1
1 ax-t-h-zssx-b+o'y-t-b-Eesy-h+
HP=;'2

1&cte
Txy't'b'—ﬁ

1
" "h+ Tyt h-;(ec+esy)tan9 b

_ 1 Esx
IIp = Ox&gx + 0y €5y + Ty & (% + tanH) Ty T TyyEsytant
Expression (2) - (4) are rewritten and inserted:

|‘rxy| = o.sinfcosH

tanf

= OsxPx — Ox
|rxy|tan9 = O5yPy — Oy
Ilp = oy, + 0y &5y + OcEC + (OsxPx — Ox)Esx + (Usypy - Uy)gSJ’

IIp = 0.6 + 05 Esxpx + Osy€syPy

2.4.3 The loss of potential energy due to non-elastic material behavior

(21)

As mentioned, it is assumed that yielding is initiated in the reinforcement in the y-direction for a load lower than

what is required for yielding the in the x-direction to develop. The loss of potential energy due to the

development of plastic strains therefore stems only from the reinforcement in the direction of the y-axis.

In accordance with the notation on Figure 6a, the loss of potential energy pr. unit volume can then be

determined as,

1 052

1 1
Aw = o4y €5y — E(Sy - E(O-sy - ()SSY T2 Es

where &y is determined as, see formula (17):

Osy — C
ssy 7E2

Inserted into formula (22):

(22)

(23)
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2.4.4 Expressing the corrected potential energy
By inserting expressions (20), (21) and (23) into (5), and by expressing the strain by stresses and stiffness’,

see (14) and (17) the corrected potential energy per volume unit is expressed by:

1 0.2 0,2 oo, —0)°
H=——< fyp +L+ sx px+(sy f) Py

2\"CE”Y T E T ES E,
By using expressions (2) - (4), oc, osx and osy are eliminated from the expression, as these are expressed by
the external stresses ox, oy and 7y, as well as the orientation of the inclined concrete compression 6 and the

degree of reinforcement py and py. This yields the following expression of the corrected potential energy.

1

11 1 2 1 Ty \2 1 2
1= =5 (58 + g (a0 + )+ 57 (0 + 25) + 55 (Ox + Tytand —¢py) ) (242)

By replacing E2 with Es in (24a) and consequently = 0, the potential energy for the purely linear elastic case
is obtained.
If the concrete strains are larger than the proportionality limit, &, the part containing the contribution from the

concrete will change, whereby the corrected potential energy is to be determined as;

1 xy 2 1 2
= _i(EiS {fypy + VfcEco + s (ox + ;nyg) + Es (0x + Txytand — {p,) ) (24b)
2.5 Equilibrium

The state of equilibrium is finally derived by applying the expression in (24a) or (24b) in combination with the

condition stated in (6). Assuming the concrete to behave linearly elastic (& < &) the following equation for

tan@is thereby obtained;

49 _ 1) — L (o= _ Ee 4g _ (P22 tan39 ) =
(tan*6 — 1) ™ (Txy tanf + 1) Faty (tan 0 ( P~ )tan 9) = 0foreg < ¢gy,8 = ¢, (25a)

The corresponding value of the principal stress direction @ ensures that the geometric and static conditions are

both fulfilled. For the case where & = &, the equation for tané changes into;

E . E py{—o- 3 _

2.6 Required strain capacity
The shear capacity of the disk is determined according to the expression in (1) for known stresses ox and oy.
Having determined the principal concrete stress direction 6 using (25a) or (25b) the stress in the reinforcement

in the y-axis direction is determined as;
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o Tyxytand
O5y = RS AN A (26)
Py Py

The corresponding strain is obtain by inserting (26) into (10)

__ OytTxytanf-{p,
B Ezp (27)
y

Esy
The hereby determined strain is the largest strain in the reinforcement. The largest determined strain for a
given combination of o, oy, and %y must be lower or equal to the strain capacity.

2.7 The dependency of the concrete strain on the strain capacity

The required strain capacity is determined on the basis of the expression in (24a) which assumes a linear
elastic behavior of concrete, or (24b) when o = vfc. With a plastic behavior of the concrete (o = vfc), the
corrected potential energy in the concrete becomes independent of the inclination of the compression in
contrast to an elastic behavior where the corrected potential energy increases as a function of decreasing
inclination (relative to 45°). At the transition to a plastic behavior of the concrete, the inclination of the
compressive stress drops slightly towards the direction of the strongest reinforcement. The strain in the
direction of the weakest reinforcement is thereby also reduced and, consequently, the required strain capacity
decreases. The most critical scenario in regards to the required strain capacity thus generally occurs for a
scenario where the concrete behaves elastic (o: < vfc) which is often the case for disks in practice.

For known materials (fy, fu, Es, &u, fc and &) and reinforcement degrees (o« and py) the available strain capacity
is determined by the expression in (13), by considering the direction with the smallest degree of reinforcement.
The orientation of the concrete compressive stresses (6) is determined by formula (25a) for any combination
of ox, oy, and =y fulfilling formula (9).

3. Comparison with tests

The model has been compared with selected tests performed and reported by Vecchio and Collins [1982]. The
comparison involves the tests with large anisotropic reinforcement layouts only.

With respect to the ultimate stress capacity fu, and the corresponding strain for the bar reinforcement these
are generally not available in [1982]. One stress-strain curve is shown in the report for one coupon from PV09.
This curve has in this comparison been generalized, so f/fy = 1.1 and &u = 13% has been used in the
comparison. Due to the uncertainties on these values also the more extreme curves with f./f, = 1.1+0.05 and

&u = 13% * 6.5% are sketched with dotted lines. The dependencies on these values is seen to be limited on
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the variation of 6, but do play and important role on the maximum strain in the reinforcement at specific load
levels.
In Figure 7 is seen comparisons on the variation of the measured and modeled orientation of the inclined stress

in the concrete on PV18 and PV19.
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Figure 7 Comparisons on the variation of the measured and modeled orientation of the inclined compression in PV18
and PV19
In Table 2 is shown the calculated maximum strain in the transverse reinforcement (given as &smax/ésu) at

maximum load.

Table 2.
&s,max! &su
fulfy = 1.10, &u = 13% fulfy = 1.15, &, =6.5% | fu/fy = 1.05, &, = 20.5%
PV18 45% 62% 40%
PV19 19% 30% 16%

It is seen from Table 2, that there is a relative large deviation on the & max/&u as function of the estimated
variations of fu/fy and &.. However, none of the estimated variations led to rupture of the reinforcement. This
was also not observed in the experiments.

In Table 3 is shown a comparison of a total of 7 tests with anisotropic reinforcement performed by Vecchio and

Collins [1982].
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Table 3. At maximum load

PV10 PV12 PV18 PV19 PV20 PVv21 PV29
Ginodel 36.6 22.9 23.2 27.4 30.2 34.9 40.3
Glest 34.5 24.9 25.7 27.3 30.3 32.4 35.4
Tu,model 3.70 3.22 3.21 4.23 4.71 5.73 5.94
Tu,test 3.97 3.13 3.04 3.94 4.26 5.03 5.87

The modeled value of both #and rare seen to fit very well with the test results.

4. Maximum anisotropic ratio.

The maximum permissible difference between reinforcement in the x- and y-direction depends on the degree
of reinforcement and of concrete strength. In the following, the maximum permissible difference, represented
as (od/py) = (omax/pmin) @s function of the lowest degree of reinforcement for three different concrete strengths
(fc = 30 MPa, f. = 60 MPa, f: = 90 MPa) for class A, B and C according to EC2 [2008].

In Figure 8, the strain capacity of the embedded reinforcement itself is determined by formula (13). The strain
capacity is in addition to reinforcement class and concrete reinforcement a function of the degree of

reinforcement.

gaveragel € CIaSS A caveragel & CIaSS B
100% s~~~ -~ e Qosg ——
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Figure 8 Strain capacity of the embedded reinforcement itself
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Table 4 shows the data used to determine gaverage-

Table 4
Class fy f Es &su fe Ac
[MPa] [MPa] [MPa] [%0] [MPa] [mm?]
A 500 525 200,000 25 30;60;90 | 100 x 100
B 500 540 200,000 5.0 30;60;90 | 100 x 100
C 500 575 200,000 7.5 30;60;90 | 100 x 100

In Figure 9 is shown the maximum values of the ratio between maximum and minimum degree of reinforcement
in the two directions, ensuring that the strain capacity of the reinforcement is sufficient for any combination of

ox, oy and zy in order to reach the strength given by the yield condition.
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Figure 9 Maximum values of the ratio between maximum and minimum degree of reinforcement, ensuring that the

strain capacity of the reinforcement is sufficient
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As an example of how to read Figure 9 a minimum degree of reinforcement of pmin = 0.76% requires that
pmax/ pmin do not exceed 3.0 for a concrete with f. = 30 MPa, in the case where the reinforcement can be
classified as Class B. For pmin = 0.76% the strain capacity according to (27) is 46% of the strain capacity of the
bar reinforcement, i.e. 0.46 x 5% = 2.3%, see also Figure 8. The combination of 7y, ox and oy leading to the
largest possible strain in the reinforcement is seen in Figure 9.

By reading in Figure 9b (Class B), a minimum degree of reinforcement of 0.3% (f. = 30 MPa) and 0.4% (for f.
= 60 MPa and f. = 90 MPa), respectively, is required in order to have sufficient strain capacity for the disk in
the isotropic case to achieve the calculated capacity according to (9). Figure 4 indicates that the calculated
crack distances for small degrees of reinforcement are significantly higher than the measured crack distances.
The crack distance is a very important factor in determining &average-

Figure 10a shows a diagram equivalent to Figure 9b, with the modification that the external stress in the
direction with the largest degree of reinforcement is kept equal to zero. It is seen that the curves are changed
significantly. For instance it is seen that in order to reach pmax/omin = 3.0 there is only required a minimum
degree of reinforcement of pmin = 0.48% for class B reinforcement.

Class B. fc =30 MPa, Omin = 0.48%. ,Omax/pmin =3.0

Class B. ox =0 MPa

fETtrrassis o=084nby

[ S Shi it St Sty ! _, ty3166MPa
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Figure 10 Maximum values of the ratio between maximum and minimum degree of reinforcement, ensuring that the
strain capacity of the reinforcement is sufficient in the case of no compression on the disk

5. Conclusion

The method used is based on yield condition for disks. This is developed under the assumption of ideal plastic
material behavior. Due to the ideal plastic material modeling, it can not be verified whether the reinforcement
has sufficient strain capacity to reach the capacity determined by the yield condition.

The method which is presented in this paper can be used to determine and ensure that the required strain

capacity for a given design and for a given load combination is present.
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For reinforcement of class A, B and C according to EC2, limits have been set up in Figure 9 for maximum
anisotropic ratio as function of minimum reinforcement and concrete strength. The limits will ensure that the
strain capacity is sufficient to reach the specific capacity regardless of the combination of external stresses.
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Appendix A Displacements at the boundary
There is considered a rectangular section with side lengths Ix and ly. The side lengths are adjusted such that
the diagonal forms the angle 0 with the x-axis. Origo is located in the center of the section. Figure Al outlines

the consequence for the strains made by the prerequisites.

(L+e5)lk = L+ Al

y
T C\ A
(I+ay)ly
1
Al = 1y+A|sy
————————————————————— ly —> X
A | lx |
|
|

Figure A1 Known deformation in the disk

The displacements of the points A-D are as shown in Figure A2. As a consequence of the displacements of

A-D, the displacements of the centers of the individual sides, points E-H, can be determined.
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Figure A2 Definition of geometrical variables

The displacements in the direction of the x-axis can be written:

( ) o (%l Vebley + Yoy
Yo tyx) =\ T~ 0T ¥

The displacements in the direction of the y-axis can be written:

Vlley + YAl VoAl
(ry Uyy) = %l Yl Y

The displacements in an arbitrary point can therefor be written:

() = (0, Pl + Yollox Yol + il Yoy
oty Vil vil, ' Y%l val, ”

The following relationships can be established between the strains and the displacements:

Al l L
c ctdiag c cosf
_ Le _ _ e oo
Al = ¢, po cost = g:ly, Al = &, P sinf = €.l tand

Alsy = g5y, Algy, = &5yl = &5yl tand

Inserted:

EctéEsy

(ux, uy) = (ssxx + iane

v, (sc + ssy)tanﬁ x + ssyy) (A1)
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For a disk or a piece of a disk with the dimension h-b in the plane, the displacements in points F and G, see

Figure A3 can be determined to:

Point F: u(x,y) = u(0, %h) = (%;7 h ey h) (A2)
Point G: u(x,y) = u(¥b,0) = (% Eox b,% (e. + &5, )tand - b) (A3)

e o
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" I A
“——— [tE(asG) -1--------- t— K —
o H (as F) $/2h
B
< b Ilay b
Figure A3 Deformation on the edge of the disk

List of notation
b Width of disk
Es Youngs modulus for reinforcement
E> Strain hardening modulus for reinforcement
Es Youngs modulus at unloading after yielding
Ec Youngs modulus for concrete
fy Yield strength of reinforcement
fu Ultimate strength of reinforcement
fe Uniaxial compressive strength of concrete
fek Characteristic compressive strength of concrete
fem Average compressive strength of concrete
h Height of disk
ldeb Extension of debonded zone at cracks
I Length of zone at cracks at with yielding
Srm Distance between cracks
t Depth of disk
\Y Volume of disk

Aw Loss of mechanical energy
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Os Diameter of reinforcement bar

& Strain in concrete

€co Max strain in concrete for elastic behavior
Eaverage Average strain in embedded reinforcement
Ecapacity Average strain in embedded reinforcement
& Strain in direction of x-axis

Esx Strain in reinforcement indirection of x-axis
& Strain in direction of y-axis

Esy Strain in reinforcement indirection of y-axis
&Esu Ultimate strain in bar reinforcement

7 Corrected potential energy

Telastic Elastic potential energy

Ik Potential energy from external load

0 Orientation of inclined concrete stress

v Effectiveness factor

4 Virtual stress (for os = 0) for strain hardening part
s Degree of reinforcement

Ox Degree of reinforcement in direction of x-axis
oy Degree of reinforcement in direction of y-axis
oc Inclined, principal stress in concrete

Os Stress in reinforcement

ox External stress in direction of x-axis

Ocx Stress in concrete in direction of x-axis

Osx Stress in reinforcement in direction of x-axis
oy External stress in direction of y-axis

Ocy Stress in concrete in direction of y-axis

Osy Stress in reinforcement in direction of y-axis
Te Elastic shear between reinforcement and concrete
Ty Plastic shear between reinforcement and concrete
Txy External shear stress

Texy Shear stress on concrete

i Ultimate shear capacity
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