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Abstract 

The yield condition for disks is a very rational method for designing concrete disks and for determining the 

strength of disks for arbitrary load combinations. When determining the yield condition for disks, use is made 

of an ideal plastic material modelling.  

In makes sure that the corresponding strain capacity is sufficient, the ideal plastic material modelling is 

replaced with a bilinear stress strain curve for the reinforcement, whereby a clear connection between strain 

and tension is established. 

Due to the interaction between concrete and reinforcement, the strain capacity of the embedded reinforcement 

is smaller than the strain capacity of the bar reinforcement. 

General limits for the choice of anisotropy ratio of the reinforcement so that sufficient strain capacity in the 

reinforcement is present by any combinations of normal and shear stresses is presented. Limits are set for the 

choice of maximum anisotropy ratio for three different reinforcement types. 

By adding limits on the maximum allowable degree of anisotropy as function of the lowest degree of 

reinforcements to the application of the yield condition, it is ensured that the strain capacity of the reinforcing 

is sufficient for any combination of the stresses obeying the yield condition. 

Introduction 

For disks subjected by shear, , the yield condition is given by: 

|𝜏𝑥𝑦| ≤ √(𝑓𝑡𝑥 − 𝜎𝑥)(𝑓𝑡𝑦 − 𝜎𝑦)     (1) 

1 Aarhus University 
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Any combination of x,y andxy, that satisfies Equation 1 can be carried by the disk. ftx is the tensile 

capacity in the direction of the x-axis just as fty is the tensile capacity in the direction of the y-axis. The yield 

condition was derived by MPN [] and is incorporated in EC2 []. 

The yield condition has the origin in the theory of plasticity and is based on a rigid plastic material 

modelling. The modelling has shown being strong in predicting the capacity. In Figure 1 is seen a 

comparison between tests and modelled capacity.   

 

Figure 1 Comparison between model and shear tests 

 

As the yield condition is based on a rigid plastic material modelling, no information is available on the 

strains in neither concrete or reinforcement whereby no information is available on whether the strain 

capacity of the materials is sufficient.  

In order to achieve such information on the strain state a bilinear material modelling of the reinforcement is 

adopted and replacing the rigid plastic modelling of the reinforcement. 

Kauffmann [] has made a corresponding investigation on the strain capacity of the concrete. Focus in this 

paper is on the strain capacity of the reinforcement. 

The yield condition is developed under the assumptions of (i) no tensile capacity of the concrete (ii) 

orthogonal reinforcement (iii) shear is carried by a combination of diagonal compression in concrete being in 

equilibrium with tension in the reinforcement and/or applied normal stresses (iv) a rigid plastic material 

modelling. 
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Based on the first three assumptions and with no matter of the material modelling the stress state in the 

material is given by: 

𝜎𝑐 = |𝜏𝑥𝑦| (tan 𝜃 +
1

tan𝜃
)      (2) 

𝜎𝑠𝑥 = (𝜎𝑥 +
|𝜏𝑥𝑦|

tan𝜃
)
1

𝜌𝑥
  (3) 

𝜎𝑠𝑦 = (𝜎𝑦 + |𝜏𝑥𝑦| tan 𝜃)
1

𝜌𝑦
  (4) 

Where c is the compressive stress in the concrete, sx and sy are the stresses in the reinforcement 

respectively in the x- and y-direction. x and y are the geometrical degree of reinforcement in the x- and y-

direction.  is the orientation of the diagonal compression stress in concrete, see Figure 2. For known 

geometry, degrees of reinforcement and applied loads (x,y andxy), the only unknown parameter is the 

orientation of the diagonal compression stress, . 
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Figure 2 a) Illustration of yield condition. b) Geometry, layout of reinforcement and stresses at the boundaries 

 

The magnitude of the inclination is a function of the ratio between the applied stresses and on the ratio 

between the degree of reinforcement in the two directions. For pure shear the compression in the concrete 

orient towards the largest degree of reinforcement and due to equilibrium leading to the largest forces in this 

direction. But at stress and strain level, the largest stresses and strains will be in the reinforcement in the 

direction with the smallest degree of reinforcement. This is due to the fact that the ratio between the forces in 



Strain Capacity of Reinforced Concrete Disk    4 

 

 

the two direction caused by the inclination of the compression in the concrete is smaller than the ratio 

between the degree of reinforcement in the two directions.  At the load level at which yielding in the 

reinforcement in the direction of the smallest degree of reinforcement is initiated, the inclination of the 

compression in the concrete is further oriented towards the direction with the largest degree of 

reinforcement. Regardless of that, the magnitude of the strain in the direction of the smallest degree of 

increases most and thereby becomes crucial with respect to strain capacity. Again this is due to the fact that 

the ratio between the forces in the two direction is smaller than the ratio between the degree of reinforcement 

in the two directions. 

Under the assumption of a rigid plastic material modeling and yielding in the reinforcement in both 

directions  is found by setting sx =sy =fy and solving equation (3) and (4) with respect to . 

In a pure elastic modeling,  is found by minimizing the strain energy in the disk.  

In the case of a bilinear material modeling the non-conservative contribution from the inelastic behavior 

must simultaneously by subtracted in the minimization of the potential energy [LGH]. 

The average strain in an embedded reinforcement bar is affected by tension stiffening. For small degrees of 

reinforcement the effect of tension stiffening becomes most significant. That means that the strain capacity, 

seen as the average strain level in the reinforcement when fu is reached in the reinforcement in the cracks, is 

smallest for the smallest degrees of reinforcement. This can be realized as smaller degrees of reinforcement 

leads to larger crack distances. 

As both crack distances and bond strength between concrete and reinforcement is a function of concrete 

strength, the restriction may also include information on the concrete strength. 

The restrictions can therefore be expected to be a function of (i) the smallest degree of reinforcement (ii) the 

degree of anisotropy and (iii) the concrete strength. 

The aim of this work are to: 

1) - Set up a general expression in order to determine the orientation of the diagonal stress in the 

concrete and thereby be able to determine the actual stresses/strains in the reinforcement. 
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2) - For different kind of ductility classes of the reinforcement to determine the maximum allowable 

degree of anisotropy as function of the lowest degree of reinforcements. 

By adding limits on the maximum allowable degree of anisotropy as function of the lowest degree of 

reinforcements to the application of the yield condition, it is ensured that the strain capacity of the 

reinforcing is sufficient for any combination of the stresses obeying the yield condition given by formula (1). 

The aim of this paper is therefor to examine how the application of the yield condition shall be 

complemented with restrictions ensuring sufficient strain capacity.  

The approach is initially illustrated by two test reported by Vecchio and Collins [1982]. The disks were both 

affected by pure shear, xy (x = y = 0).  

The disks had degrees of reinforcement given by respectively x/y (= max/min) = 0.0181/0.0072 = 2.5 and 

x/y = 0.0181/0.0032 = 5.7. As an outset both disks were uncracked whereby the diagonal concrete stress, 

c, is oriented at an angle of 45o. At a certain load level the disks will crack.  

For a load larger than the cracking load, and less than the load level at which the reinforcement yields, the 

orientation of the stress in the concrete will be determined by minimizing the strain energy. Hereby it is 

found that the orientation of the stress in the concrete will change so the stress is oriented towards the 

direction with the largest degree of reinforcement. That is, is reduced for load levels (here expressed by 

xy) higher than the cracking load. By analyzing the stresses in the reinforcement at this load level, it is seen 

that the stresses are largest in the direction with the lowest degree of reinforcement. 

By further uploading, yielding in the direction with the lowest degree of reinforcement will be reached at a 

certain load level. From the load level at which the disk crack and up to the load level where yielding occurs, 

the orientation of the stress in the concrete is constant and consequently the stress in the reinforcement is 

proportional to the load level. At loading above the load level at which yielding occurs, the reinforcement in 

the direction of the lowest degree of reinforcement will yield and the inclination of the compression in the 

concrete will further orientate towards the direction with the largest degree of reinforcement. 

The modeled inclination of the principal stress in the concrete and the maximum strain in the reinforcement 

is sketched in figure 3 as function of the applied load for both disks. 
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a)     b)  

Figure 3 Modeled inclination of the principal stress in the concrete and the maximum strain in the reinforcement for PV 

18 ad PV19 

 

In PV19, the ratio between the max. strain in the reinforcement and the yield strain is 3.1. In PV18, the ratio 

between the max. strain in the reinforcement and the yield strain is 5.5. It is a general observation, that larger 

ratios of x/y leads to larger needed strain capacities of the reinforcement in order to reach the capacity given 

by (1). 

2 Theory 

2.1 Equilibrium for inelastic materials 

A state of equilibrium can generally be determined by minimizing the potential energy. This ensures that both 

the static and geometric conditions are fulfilled. For statically indeterminate systems made of linear elastic 

materials, equilibrium is found by minimizing the elastic energy. For systems with materials exhibiting inelastic 

behavior, equilibrium can be determined by minimizing the potential energy taking into account energy 

dissipation [2017].  

The potential energy is determined as the sum of the elastic energy stored in the materials, elastic subtracted 

the product of the external forces and their displacements, P. Owing to the inelastic material behavior, the 

system also loses mechanical/potential energy, w. This part must subtracted the potential energy, . 

𝛱 − Δ𝑤 = 𝛱𝑒𝑙𝑎𝑠𝑡𝑖𝑐 − 𝛱𝑃 

𝛱 = 𝛱𝑒𝑙𝑎𝑠𝑡𝑖𝑐 − 𝛱𝑃 + Δ𝑤  (5) 

Equilibrium is the determined by requiring: 

𝑑𝛱

𝑑𝜃
= 0  (6) 
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In order to be able to express the different contributions to the corrected potential energy, knowledge of 

constitutive relations as well as the displacements of the boundaries is needed.  

2.2 Material modeling 

2.2.1 Concrete 

The concrete is assumed to have no tensile strength, and in regards to compression, a linear elastic-ideal 

plastic behavior is assumed. The following relations between stresses and strains are applied: 

𝜎𝑐 = {
𝜀𝑐𝐸𝑐    for 𝜀𝑐 ≤ 𝜀𝑐𝑜
𝜈𝑓𝑐      for 𝜀𝑐 ≥ 𝜀𝑐𝑜

   (7) 

Ec is taken as the average secant-modulus and  is the effectiveness factor. Both are determined according 

to Eurocode 2 [2008]: 

𝜈 = 0.6 (1 −
𝑓𝑐𝑘

250
)  (8) 

𝐸𝑐 = 22 (
𝑓𝑐𝑚

10
)
0.3

, 𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8  (9) 

2.2.2 Naked and embedded Reinforcement 

The naked reinforcement is modelled using a bilinear stress-strain curve, as shown in Figure 5a. 

Due to the bond between concrete and reinforcement, the strain varies along the embedded reinforcement. 

Peak steel strains are obtained at the position of cracks, and in-between cracks the strains are reduced owing 

to the restraining action of bond.  

Different approaches in regards to modelling of reinforcement bond has been proposed [1998], [2007], [2011]. 

In the present approach, a slightly corrected version the Tension Chord Model, proposed by Marti et al. [1998] 

is adopted. According to the Tension Chord Model, the crack distance in reinforced concrete bar is given as: 

𝑠𝑟𝑚 = 1.33
ø

8

1−𝜌𝑠

𝜌𝑠
  (10) 

Figure 4 shows a comparison between measured crack distances and the crack distance determined by 

formula (10) as a function of the degree of reinforcement. 
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Figure 4 Comparison between measured crack distances and the crack distance determined by the Tension Chord 

Model as function of s 
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Figure 5 a) Model of embedded and bar reinforcement b) Variation of strains in embedded reinforcement 

 

Locally, in a zone near the cracks visible at the surface, small conical cracks [1971] develops, and, as a 

consequence, a zone with no bond develops near the cracks. The influence of such local effects has also been 

recognized by Leoanhardt []. In an effort to take the effect of such local zones with no/limited bond into account 

Jokela [1986] set up an expression for the length of the debonded zone near the cracks. This is given by: 

𝑙𝑑𝑒𝑏 =
1

2
(1 +

𝜎𝑠

100
) ø𝑠  (11) 

The aim of the present investigation is to model the case where the stresses in the cracks has reached fu. 

When evaluating ldeb the reinforcement stress will be taken as fu as a reasonable simplification. 

Next to the debonded zones, reinforcement and concrete are interacting in accordance to the Tension Chord 

Model. Accordingly, the determination of bond stresses is done using two different expressions; one for case 

where the reinforcement behaves elastically, e, and one for case where the reinforcement is yielding, y: 
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𝜏(𝑥) = {
𝜏𝑒 = 0.6𝑓𝑐

2/3

𝜏𝑦 = 0.3𝑓𝑐
2/3  (12) 

The strain capacity of the embedded reinforcement can be determined as the average strain in the 

reinforcement in the event that the ultimate strain of the reinforcement is reached in the cracks.  

The strain capacity can be determined as the average strain in the reinforcement over a distance eual to the 

distance between two cracks, srm: 

𝜀𝑠,𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝜀𝑠,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑠𝑟𝑚
∙ 2 ∫ 𝜀𝑠(𝑥)𝑑𝑥

½𝑠𝑟𝑚
0

  (13) 

An expression for the variation of the strain in the reinforcement in the neighborhood of a crack  (here x = 0 at 

the crack) will accordingly be divided into three parts: 

𝜀(𝑥) =

{
 
 

 
 
𝜀𝑢                                                 for                𝑥 ≤  𝑙𝑑𝑒𝑏      

1

𝐸2
(𝑓𝑢 − 𝜁 −

4𝜏𝑦

ø𝑠
(𝑥 − 𝑙𝑑𝑒𝑏))  for 𝑙𝑑𝑒𝑏 <  𝑥 ≤  𝑙𝑝         

1

𝐸𝑠
(𝑓𝑦 −

4𝜏𝑒

ø𝑠
(𝑥 − 𝑙𝑝))              for 𝑙𝑝    <  𝑥                     

  (14) 

lp is the distance from the crack to the location where s = fy. This distance is given by: 

𝑙𝑝 =
(𝑓𝑢−𝑓𝑦)ø𝑠

4𝜏𝑦
+ 𝑙𝑑𝑒𝑏 =

(𝑓𝑢−𝑓𝑦)ø𝑠

4𝜏𝑦
+

1

2
(1 +

𝑓𝑦

100
) ø𝑠  (15) 

Inserting (14) in (13) leads to the following expressions for average depending on the length of the plastic zone. 

If ½srm > lp: 

𝜀𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑠𝑟𝑚
2

(

 
 
𝜀𝑢𝑙𝑑𝑒𝑏 +

1

𝐸2
((𝑓𝑢 − 𝜁 +

4𝜏𝑦

ø𝑠
𝑙𝑑𝑒𝑏) (𝑙𝑝 − 𝑙𝑑𝑒𝑏) −

2𝜏𝑦

ø𝑠
(𝑙𝑝

2 − 𝑙𝑑𝑒𝑏
2))

+
1

𝐸𝑠
(𝑓𝑦 +

4𝜏𝑒

ø𝑠
𝑙𝑝(½𝑠𝑟𝑚 − 𝑙𝑝) −

2𝜏𝑒

ø𝑠
(
1

4
𝑠𝑟𝑚

2 − 𝑙𝑝
2))

)

 
 

   (16a) 

If ½srm < lp: 

𝜀𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑠𝑟𝑚
2(𝜀𝑢𝑙𝑑𝑒𝑏 +

1

𝐸2
((𝑓𝑢 − 𝜁 +

4𝜏𝑦

ø𝑠
𝑙𝑑𝑒𝑏) (½𝑠𝑟𝑚 − 𝑙𝑑𝑒𝑏) −

2𝜏𝑦

ø𝑠
(
1

4
𝑠𝑟𝑚

2 − 𝑙𝑑𝑒𝑏
2)))    (16b) 

In Figure 5b, an example of the variation of the reinforcement strains is shown, in which the meaning of average 

is also illustrated. In Figure 5a, the bold, fully drawn line shows the modeled stress-strain curve of an embedded 

reinforcement bar. It is this stress-strain curve that is to be applied in the following. By refereeing to the bold 

line in Figure 5a, the corresponding reinforcement stresses can be determined as: 

𝜎𝑠 = {
𝜀𝑠𝐸𝑠           for 𝜀𝑠 ≤ 𝜀𝑦
𝜁 + 𝜀𝑠𝐸2 for 𝜀𝑠 ≥ 𝜀𝑦

  (17) 
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What regards the strains in the concrete, only knowledge of the principal (compressive) strain, at an angle  

with respect to the x-axis, is available. The principal concrete strain perpendicular to this compressive strain is 

not known. It is known that it is a positive strain, but the magnitude is unknown. Accordingly, the size of the 

strain in the concrete is also unknown in other sections a priori. The average strain in the disk in the x-y 

direction is identical to the average strain in the reinforcement in these directions. Hence, the strains in the 

disk are known in the directions of the x and y axis. Knowledge of these three strains is sufficient to determine 

the displacements at any point in the disk, as well as on the boundaries. 

2.3 Displacements on the boundaries 

The potential energy also includes the contribution from the external stresses, whereby knowledge of the 

displacements on the boundaries are necessary. On basis of the previously mentioned known strains, an 

expression for the boundary displacements can be derived. For a disk, or piece of a disk, with in-plane 

dimensions h∙b, the displacements in points F and G, can be found (see appendix A)  

Point F: 𝑢(𝑥, 𝑦) = 𝑢(0,½ℎ) = (
1

2

𝜀𝑐+𝜀𝑠𝑥

tan𝜃
∙ ℎ,

1

2
𝜀𝑠𝑦 ∙ ℎ)  (18) 

Point G: 𝑢(𝑥, 𝑦) = 𝑢(½𝑏, 0) = (
1

2
𝜀𝑠𝑥 ∙ 𝑏,

1

2
(𝜀𝑐 + 𝜀𝑠𝑦)tan𝜃 ∙ 𝑏)  (19) 

Using these expressions, the loss in potential energy owing to the displacement of external forces can be 

determined.  

2.4 The corrected potential energy 

Each of the three parts included in the corrected potential energy is illustrated on Figure 6. It is assumed that 

yielding in the reinforcement in the y-direction is initiated first. Hence, the reinforcement in the direction of the 

x-axis as well as the concrete remains in the elastic range. 
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Figure 6 Illustration of elastic energy and lost mechanical energy 
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2.4.1 The elastic energy 

The elastic energy per unit volume of the disk is given by: 

𝛱𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
𝜎𝑐𝜀𝑐 +

1

2
𝜎𝑠𝑥𝜀𝑠𝑥𝜌𝑥 +

1

2

𝜎𝑠𝑦
2

𝐸3
𝜌𝑦  (20) 

2.5.2 The loss of potential energy from the external stresses 

Based on expressions (18) an (19) the loss of potential energy per unit of volume (V = h∙b∙t) owing to the 

external forces (i.e, the resultants of xy,x andy) can be expressed as: 

𝛱𝑃 =
1

𝑉
∙ 2 (

𝜎𝑥 ∙ 𝑡 ∙ ℎ ∙
1

2
𝜀𝑠𝑥 ∙ 𝑏 + 𝜎𝑦 ∙ 𝑡 ∙ 𝑏 ∙

1

2
𝜀𝑠𝑦 ∙ ℎ +

𝜏𝑥𝑦 ∙ 𝑡 ∙ 𝑏 ∙
1

2

𝜀𝑐+𝜀𝑠𝑥

tan𝜃
∙ ℎ + 𝜏𝑥𝑦 ∙ 𝑡 ∙ ℎ ∙

1

2
(𝜀𝑐+𝜀𝑠𝑦)tan𝜃 ∙ 𝑏

)  

𝛱𝑃 = 𝜎𝑥𝜀𝑠𝑥 + 𝜎𝑦𝜀𝑠𝑦 + 𝜏𝑥𝑦𝜀𝑐 (
1

tan𝜃
+ tan𝜃) + 𝜏𝑥𝑦

𝜀𝑠𝑥

tan𝜃
+ 𝜏𝑥𝑦𝜀𝑠𝑦tan𝜃  

Expression (2) - (4) are rewritten and inserted: 

|𝜏𝑥𝑦| = 𝜎𝑐𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

|𝜏𝑥𝑦|

tan𝜃
= 𝜎𝑠𝑥𝜌𝑥 − 𝜎𝑥 

|𝜏𝑥𝑦|tan𝜃 = 𝜎𝑠𝑦𝜌𝑦 − 𝜎𝑦 

𝛱𝑃 = 𝜎𝑥𝜀𝑠𝑥 + 𝜎𝑦𝜀𝑠𝑦 + 𝜎𝑐𝜀𝑐 + (𝜎𝑠𝑥𝜌𝑥 − 𝜎𝑥)𝜀𝑠𝑥 + (𝜎𝑠𝑦𝜌𝑦 − 𝜎𝑦)𝜀𝑠𝑦  

𝛱𝑃 = 𝜎𝑐𝜀𝑐 + 𝜎𝑠𝑥𝜀𝑠𝑥𝜌𝑥 + 𝜎𝑠𝑦𝜀𝑠𝑦𝜌𝑦   (21) 

2.4.3 The loss of potential energy due to non-elastic material behavior 

As mentioned, it is assumed that yielding is initiated in the reinforcement in the y-direction for a load lower than 

what is required for yielding the in the x-direction to develop. The loss of potential energy due to the 

development of plastic strains therefore stems only from the reinforcement in the direction of the y-axis.  

In accordance with the notation on Figure 6a, the loss of potential energy pr. unit volume can then be 

determined as,  

Δ𝑤 = 𝜎𝑠𝑦𝜀𝑠𝑦 −
1

2
𝜁𝜀𝑦 −

1

2
(𝜎𝑠𝑦 − 𝜁)𝜀𝑠𝑦 −

1

2

𝜎𝑠𝑦
2

𝐸3
  (22) 

where sy is determined as, see formula (17): 

𝜀𝑠𝑦 =
𝜎𝑠𝑦 − 𝜁

𝐸2
 

Inserted into formula (22): 

Δ𝑤 = 𝜎𝑠𝑦𝜀𝑠𝑦 −
1

2
𝜁𝜀𝑦 −

1

2

(𝜎𝑠𝑦−𝜁)
2

𝐸2
−

1

2

𝜎𝑠𝑦
2

𝐸3
  (23) 
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2.4.4 Expressing the corrected potential energy 

By inserting expressions (20), (21) and (23) into (5), and by expressing the strain by stresses and stiffness`, 

see (14) and (17) the corrected potential energy per volume unit is expressed by: 

𝛱 = −
1

2
(𝜁
𝑓𝑦

𝐸𝑠
𝜌𝑦 +

𝜎𝑐
2

𝐸𝑐
+
𝜎𝑠𝑥

2

𝐸𝑠
𝜌𝑥 +

(𝜎𝑠𝑦 − 𝜁)
2

𝐸2
𝜌𝑦) 

By using expressions (2) - (4), c, sx and sy are eliminated from the expression, as these are expressed by 

the external stresses x, y and xy, as well as the orientation of the inclined concrete compression  and the 

degree of reinforcement x and y. This yields the following expression of the corrected potential energy. 

𝛱 = −
1

2
(
1

𝐸𝑠
𝜁𝑓𝑦𝜌𝑦 +

1

𝐸𝑐
𝜏𝑥𝑦

2 (tan𝜃 +
1

tan𝜃
)
2
+

1

𝜌𝑥𝐸𝑠
(σ𝑥 +

𝜏𝑥𝑦

tan𝜃
)
2
+

1

𝜌𝑦𝐸2
(σ𝑥 + 𝜏𝑥𝑦tan𝜃 − 𝜁𝜌𝑦)

2
)  (24a) 

By replacing E2 with Es in (24a) and consequently  = 0, the potential energy for the purely linear elastic case 

is obtained.  

If the concrete strains are larger than the proportionality limit, co, the part containing the contribution from the 

concrete will change, whereby the corrected potential energy is to be determined as; 

𝛱 = −
1

2
(
1

𝐸𝑠
𝜁𝑓𝑦𝜌𝑦 + 𝜈𝑓𝑐𝜀𝑐𝑜 +

1

𝜌𝑥𝐸𝑠
(σ𝑥 +

𝜏𝑥𝑦

tan𝜃
)
2

+
1

𝜌𝑦𝐸2
(σ𝑥 + 𝜏𝑥𝑦tan𝜃 − 𝜁𝜌𝑦)

2
)             (24b) 

2.5 Equilibrium 

The state of equilibrium is finally derived by applying the expression in (24a) or (24b) in combination with the 

condition stated in (6). Assuming the concrete to behave linearly elastic (c ≤ co) the following equation for 

tan is thereby obtained; 

(tan4𝜃 − 1) −
𝐸𝑐

𝐸𝑠𝜌𝑥
(
𝜎𝑥

𝜏𝑥𝑦
tan𝜃 + 1) −

𝐸𝑐

𝐸2𝜌𝑦
(tan4𝜃 − (

𝜌𝑦𝜁−𝜎𝑦

𝜏𝑥𝑦
) tan3𝜃) = 0 for 𝜀𝑠𝑥 ≤ 𝜀𝑦 , 𝜀𝑠𝑦 ≥ 𝜀𝑦  (25a) 

The corresponding value of the principal stress direction ensures that the geometric and static conditions are 

both fulfilled. For the case where c ≥ co the equation for tan changes into; 

−
𝐸𝑐

𝐸𝑠𝜌𝑥
(
𝜎𝑥

𝜏𝑥𝑦
tan𝜃 + 1) −

𝐸𝑐

𝐸2𝜌𝑦
(tan4𝜃 − (

𝜌𝑦𝜁−𝜎𝑦

𝜏𝑥𝑦
) tan3𝜃) = 0 for 𝜀𝑠𝑥 ≤ 𝜀𝑦, 𝜀𝑠𝑦 ≥ 𝜀𝑦                    (25b) 

2.6 Required strain capacity 

The shear capacity of the disk is determined according to the expression in (1) for known stresses x and y. 

Having determined the principal concrete stress direction using (25a) or (25b) the stress in the reinforcement 

in the y-axis direction is determined as; 
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𝜎𝑠𝑦 =
𝜎𝑦

𝜌𝑦
+

𝜏𝑥𝑦tan𝜃

𝜌𝑦
  (26) 

The corresponding strain is obtain by inserting (26) into (10) 

𝜀𝑠𝑦 =
𝜎𝑦+𝜏𝑥𝑦tan𝜃−𝜁𝜌𝑦

𝐸2𝜌𝑦
  (27) 

The hereby determined strain is the largest strain in the reinforcement. The largest determined strain for a 

given combination of x,y, andxy must be lower or equal to the strain capacity. 

2.7 The dependency of the concrete strain on the strain capacity  

The required strain capacity is determined on the basis of the expression in (24a) which assumes a linear 

elastic behavior of concrete, or (24b) when c = fc. With a plastic behavior of the concrete (c = fc), the 

corrected potential energy in the concrete becomes independent of the inclination of the compression in 

contrast to an elastic behavior where the corrected potential energy increases as a function of decreasing 

inclination (relative to 45o). At the transition to a plastic behavior of the concrete, the inclination of the 

compressive stress drops slightly towards the direction of the strongest reinforcement. The strain in the 

direction of the weakest reinforcement is thereby also reduced and, consequently, the required strain capacity 

decreases. The most critical scenario in regards to the required strain capacity thus generally occurs for a 

scenario where the concrete behaves elastic (c < fc) which is often the case for disks in practice. 

For known materials (fy, fu, Es, u, fc and co) and reinforcement degrees (x and y) the available strain capacity 

is determined by the expression in (13), by considering the direction with the smallest degree of reinforcement. 

The orientation of the concrete compressive stresses () is determined by formula (25a) for any combination 

of x,y, andxy fulfilling formula (9).  

3. Comparison with tests  

The model has been compared with selected tests performed and reported by Vecchio and Collins [1982]. The 

comparison involves the tests with large anisotropic reinforcement layouts only.  

With respect to the ultimate stress capacity fu, and the corresponding strain for the bar reinforcement these 

are generally not available in [1982]. One stress-strain curve is shown in the report for one coupon from PV09. 

This curve has in this comparison been generalized, so fu/fy = 1.1 and su = 13% has been used in the 

comparison. Due to the uncertainties on these values also the more extreme curves with fu/fy = 1.1±0.05 and 

su = 13% ± 6.5% are sketched with dotted lines. The dependencies on these values is seen to be limited on 
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the variation of , but do play and important role on the maximum strain in the reinforcement at specific load 

levels.  

In Figure 7 is seen comparisons on the variation of the measured and modeled orientation of the inclined stress 

in the concrete on PV18 and PV19.  

 

 

 

 

 

 

Figure 7 Comparisons on the variation of the measured and modeled orientation of the inclined compression in PV18  

and PV19 

In Table 2 is shown the calculated maximum strain in the transverse reinforcement (given as s,max/su) at 

maximum load. 

Table 2.  

 s,max/su 

 fu/fy = 1.10, su = 13% fu/fy = 1.15, su = 6.5% fu/fy = 1.05, su = 20.5% 

PV18 45% 62% 40% 

PV19 19% 30% 16% 

 

It is seen from Table 2, that there is a relative large deviation on the s,max/su as function of the estimated 

variations of fu/fy and su. However, none of the estimated variations led to rupture of the reinforcement. This 

was also not observed in the experiments. 

In Table 3 is shown a comparison of a total of 7 tests with anisotropic reinforcement performed by Vecchio and 

Collins [1982]. 
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Table 3. At maximum load 

 PV10 PV12 PV18 PV19 PV20 PV21 PV29 

model 36.6 22.9 23.2 27.4 30.2 34.9 40.3 

test 34.5 24.9 25.7 27.3 30.3 32.4 35.4 

u,model 3.70 3.22 3.21 4.23 4.71 5.73 5.94 

u,test 3.97 3.13 3.04 3.94 4.26 5.03 5.87 

The modeled value of both  and  are seen to fit very well with the test results. 

4. Maximum anisotropic ratio. 

The maximum permissible difference between reinforcement in the x- and y-direction depends on the degree 

of reinforcement and of concrete strength. In the following, the maximum permissible difference, represented 

as (x/y) = (max/min) as function of the lowest degree of reinforcement for three different concrete strengths 

(fc = 30 MPa, fc = 60 MPa, fc = 90 MPa) for class A, B and C according to EC2 [2008]. 

In Figure 8, the strain capacity of the embedded reinforcement itself is determined by formula (13). The strain 

capacity is in addition to reinforcement class and concrete reinforcement a function of the degree of 

reinforcement. 

 
 

 

 
 

Figure 8 Strain capacity of the embedded reinforcement itself 
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Table 4 shows the data used to determine average. 

Table 4 

Class fy fu Es su fc Ac 

 [MPa] [MPa] [MPa] [%] [MPa] [mm2] 

A 500 525 200,000 2.5 30;60;90 100 x 100 

B 500 540 200,000 5.0 30;60;90 100 x 100 

C 500 575 200,000 7.5 30;60;90 100 x 100 

 

In Figure 9 is shown the maximum values of the ratio between maximum and minimum degree of reinforcement 

in the two directions, ensuring that the strain capacity of the reinforcement is sufficient for any combination of 

x, y and xy in order to reach the strength given by the yield condition. 

 

 
 

 

 

 

 

Figure 9 Maximum values of the ratio between maximum and minimum degree of reinforcement, ensuring that the 

strain capacity of the reinforcement is sufficient 
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y 

x = -0.58fc x 

x 

y 
xy 

xy 
xy 

xy = 4.00 MPa 

 = 15o 

y = 0.79yfy 

sy = fu 

sx = 0.50fy 

c= fc 

Class B. fc = 30 MPa, min = 0.76%. max/min = 3.0 
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As an example of how to read Figure 9 a minimum degree of reinforcement of min = 0.76% requires that 

max/min do not exceed 3.0 for a concrete with fc = 30 MPa, in the case where the reinforcement can be 

classified as Class B. For min = 0.76% the strain capacity according to (27) is 46% of the strain capacity of the 

bar reinforcement, i.e. 0.46 x 5% = 2.3%, see also Figure 8. The combination of xy, x and y leading to the 

largest possible strain in the reinforcement is seen in Figure 9.  

By reading in Figure 9b (Class B), a minimum degree of reinforcement of 0.3% (fc = 30 MPa) and 0.4% (for fc 

= 60 MPa and fc = 90 MPa), respectively, is required in order to have sufficient strain capacity for the disk in 

the isotropic case to achieve the calculated capacity according to (9). Figure 4 indicates that the calculated 

crack distances for small degrees of reinforcement are significantly higher than the measured crack distances. 

The crack distance is a very important factor in determining average. 

Figure 10a shows a diagram equivalent to Figure 9b, with the modification that the external stress in the 

direction with the largest degree of reinforcement is kept equal to zero. It is seen that the curves are changed 

significantly. For instance it is seen that in order to reach max/min = 3.0 there is only required a minimum 

degree of reinforcement of min = 0.48% for class B reinforcement.  

 

 

 

 

 

 

 

 

 

Figure 10 Maximum values of the ratio between maximum and minimum degree of reinforcement, ensuring that the 

strain capacity of the reinforcement is sufficient in the case of no compression on the disk 

5. Conclusion 

The method used is based on yield condition for disks. This is developed under the assumption of ideal plastic 

material behavior. Due to the ideal plastic material modeling, it can not be verified  whether the reinforcement 

has sufficient strain capacity to reach the capacity determined by the yield condition. 

The method which is presented in this paper can be used to determine and ensure that the required strain 

capacity for a given design and for a given load combination is present. 
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For reinforcement of class A, B and C according to EC2, limits have been set up in Figure 9 for maximum 

anisotropic ratio as function of minimum reinforcement and concrete strength. The limits will ensure that the 

strain capacity is sufficient to reach the specific capacity regardless of the combination of external stresses. 
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Appendix A Displacements at the boundary 

There is considered a rectangular section with side lengths lx and ly. The side lengths are adjusted such that 

the diagonal forms the angle  with the x-axis. Origo is located in the center of the section. Figure A1 outlines 

the consequence for the strains made by the prerequisites. 

 

x 

y 

A 

B 

F C 

G 

E 

D 

H 

A` 

E` 

B` 

F` 

C` 

G` 

D` 

H` 



½lc 

½lc 

lx 

(1+sx)lx = 1x+lsx  

 

ly 

(1+sy)ly  

  = 1y+lsy  

 

ly = lx∙tan 

 

Figure A1 Known deformation in the disk 

 

The displacements of the points A-D are as shown in Figure A2. As a consequence of the displacements of 

A-D, the displacements of the centers of the individual sides, points E-H, can be determined. 
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Figure A2 Definition of geometrical variables 

 

The displacements in the direction of the x-axis can be written: 

(𝑢𝑥,𝑥 , 𝑢𝑦,𝑥) = (
½Δ𝑙𝑠𝑥
½𝑙𝑥

𝑥,
½Δ𝑙𝑐𝑦 +½Δ𝑙𝑠𝑦

½𝑙𝑥
𝑥) 

The displacements in the direction of the y-axis can be written: 

(𝑢𝑥,𝑦 , 𝑢𝑦,𝑦) = (
½Δ𝑙𝑐𝑥 +½Δ𝑙𝑠𝑥

½𝑙𝑦
+
½Δ𝑙𝑠𝑦

½𝑙𝑦
𝑦) 

The displacements in an arbitrary point can therefor be written: 

(𝑢𝑥 , 𝑢𝑦) = (
½Δ𝑙𝑠𝑥
½𝑙𝑥

𝑥 +
½Δ𝑙𝑐𝑥 +½Δ𝑙𝑠𝑥

½𝑙𝑦
,
½Δ𝑙𝑐𝑦 +½Δ𝑙𝑠𝑦

½𝑙𝑥
𝑥 +

½Δ𝑙𝑠𝑦

½𝑙𝑦
𝑦) 

The following relationships can be established between the strains and the displacements: 

Δ𝑙𝑐 = 𝜀𝑐𝑙𝑑𝑖𝑎𝑔 = 𝜀𝑐
𝑙𝑥
cos𝜃

 

Δ𝑙𝑐𝑥 = 𝜀𝑐
𝑙𝑥

cos𝜃
cos𝜃 = 𝜀𝑐𝑙𝑥, Δ𝑙𝑐𝑦 = 𝜀𝑐

𝑙𝑥

cos𝜃
sin𝜃 = 𝜀𝑐𝑙𝑥tan𝜃 

Δ𝑙𝑠𝑥 = 𝜀𝑠𝑥𝑙𝑥, Δ𝑙𝑠𝑦 = 𝜀𝑠𝑦𝑙𝑦 = 𝜀𝑠𝑦𝑙𝑥tan𝜃  

Inserted: 

(𝑢𝑥 , 𝑢𝑦) = (𝜀𝑠𝑥𝑥 +
𝜀𝑐+𝜀𝑠𝑥

tan𝜃
𝑦, (𝜀𝑐 + 𝜀𝑠𝑦)tan𝜃 𝑥 + 𝜀𝑠𝑦𝑦)  (A1) 
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For a disk or a piece of a disk with the dimension h∙b in the plane, the displacements in points F and G, see 

Figure A3 can be determined to: 

Point F: 𝑢(𝑥, 𝑦) = 𝑢(0,½ℎ) = (
1

2

𝜀𝑐+𝜀𝑠𝑥

tan𝜃
∙ ℎ,

1

2
𝜀𝑠𝑦 ∙ ℎ)  (A2) 

Point G: 𝑢(𝑥, 𝑦) = 𝑢(½𝑏, 0) = (
1

2
𝜀𝑠𝑥 ∙ 𝑏,

1

2
(𝜀𝑐 + 𝜀𝑠𝑦)tan𝜃 ∙ 𝑏)    (A3) 
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Figure A3 Deformation on the edge of the disk 

 

List of notation  

b  Width of disk   

Es  Youngs modulus for reinforcement 

E2  Strain hardening modulus for reinforcement 

E3  Youngs modulus at unloading after yielding 

Ec  Youngs modulus for concrete 

fy Yield strength of reinforcement 

fu Ultimate strength of reinforcement 

fc  Uniaxial compressive strength of concrete 

fck  Characteristic compressive strength of concrete 

fcm  Average compressive strength of concrete 

h Height of disk  

ldeb Extension of debonded zone at cracks 

lp Length of zone at cracks at with yielding 

srm Distance between cracks 

t Depth of disk 

V Volume of disk 

w  Loss of mechanical energy 
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øs Diameter of reinforcement bar 

c Strain in concrete 

co Max strain in concrete for elastic behavior 

average Average strain in embedded reinforcement 

capacity Average strain in embedded reinforcement 

x Strain in direction of x-axis 

sx Strain in reinforcement indirection of x-axis 

y Strain in direction of y-axis 

sy Strain in reinforcement indirection of y-axis 

su Ultimate strain in bar reinforcement  

  Corrected  potential energy  

elastic  Elastic potential energy 

P  Potential energy from external load 

 Orientation of inclined concrete stress  

 Effectiveness factor 

 Virtual stress (for s = 0) for strain hardening part 

s Degree of reinforcement 

x Degree of reinforcement in direction of x-axis 

y Degree of reinforcement in direction of y-axis  

c Inclined, principal stress in concrete 

s Stress in reinforcement  

x External stress in direction of x-axis 

cx Stress in concrete in direction of x-axis 

sx Stress in reinforcement in direction of x-axis 

y External stress in direction of y-axis 

cy Stress in concrete in direction of y-axis 

sy Stress in reinforcement in direction of y-axis 

e Elastic shear between reinforcement and concrete 

y Plastic shear between reinforcement and concrete 

xy External shear stress 

cxy Shear stress on concrete 

u Ultimate shear capacity 
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