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1.   Introduction 

This thesis presents a review of theoretical analysis of bridge deck flutter. The 

objective is partly to present the authors original contribution to the analysis of 

one-degree-of-freedom torsion flutter, partly to present an update of classical two-

degree-of-freedom flutter analysis. This involves extension into three-degrees-of-

freedom by including horizontal modes and an evaluation hereof considering three 

cases of cable supported bridges. The presentation is self-contained emphasizing 

the underlying physics of the flutter problems discussed. Much of the develop-

ment in bridge flutter analysis within the past three decades is scattered in scien-

tific journals and conference proceedings and is less accessible to newcomers. The 

thesis attempts to improve on this situation by offering a storehouse of concepts 

and methods available to the flutter analyst. Wind tunnel techniques applied in 

flutter testing of bridge decks is only covered in sufficient detail to illustrate how 

experimental data needed for analysis is obtained. 

2.  Definition of Bridge Deck Flutter 

Flutter refers to a condition by which a bridge deck becomes unstable and oscil-

lates in an otherwise steady wind flow. The phenomenon is often divided in two 

categories according to the physics involved: 1) One-degree-of-freedom flutter or 

“torsion flutter” and 2) Two-degree-of-freedom flutter or “classical flutter”, alt-

hough some controversy exists over the use of the term one-degree-of-freedom 

flutter. For One-degree-of-freedom flutter the wind loading causes the bridge 

girder to oscillate in pure torsion at a frequency equal to the eigenfrequency of the 

structural torsion mode. The response will grow approximately linearly with in-

creasing wind speed once a threshold wind speed is exceeded. Two-degree-of-

freedom combines torsion and bending oscillations at a common frequency in 

between the structural eigenfrequencies of the participating modes. The response 

will grow exponentially with increasing wind speed once the threshold or critical 

wind speed is exceeded. 

                                                 
1
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3.  Historical Background 

3.1 Early suspension bridges 

Early suspension bridges in Europe and North America had a strange tendency to 

be damaged or destroyed by storm winds. From 1818 to 1889 a total of 10 suspen-

sion bridges were seriously damaged some of them several times. On 29th No-

vember 1836 the third span of the Brighton Chain Pier was wrecked in a storm 

described as being as strong as a tropical hurricane by Lieutenant Colonel Reid of 

the Royal Corps of Engineers. In a written record of the incident, Reid describes 

how oscillations of the bridge deck preceded the fatal "undulating motion" shown 

in an accompanying sketch Figure 3.1. To the trained eye the sketch displays the 

first asymmetrical vertical or torsion eigenmode of a typical suspension bridge 

indicating that the collapse was linked to dynamic resonant excitation. 

 

Figure 3.1 Fatal undulating motion of the third span of the Brighton Chain Pier in the storm of 

1836 sketched by Ried (J.S. Russell, 1839). 

The Menai Strait Bridge in North Wales, UK is another historic suspension bridge 

that suffered severe damage in storms in 1826, 1836 and 1839. The resident engi-

neer Provis [1] describes the first incident in 1826 as follows: "The motion which 

had been anticipated was that of a simple undulation flowing in right angles to the 

length of the bridge (along the span) … The movement of this undulating wave, 

however, was oblique with the general direction of the bridge. In other words, 

when the summit of the wave was at a given point on the windward side of the 

bridge, it was not opposite this point on the leeward side, but, in relation to the 

flow of the wave, considerably behind it; the motion appearing to be generated on 

the windward side, and by the time it had crossed to the leeward it had moved 

forward along that on which it had commenced… The motion was observed to be 

greatest about half way between the pyramids (the towers) and the centre of the 

bridge. The wave increased in its progress from the pyramid till it attained its 

maximum amplitude at the first quarter, and at the same instant the extreme de-

pression was near the third quarter. The wave then gradually diminished to the 

centre of the bridge and afterwards increased to the third quarter, when it at-

tained its greatest height at the same time that the first quarter was most de-

pressed. The platform (the deck) and the main chains were equally subjected to 
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this undulatory motion". On the amplitudes attained by the bridge in the 1836 

storm Provis writes: "It is not easy to define correctly the rise and fall of the 

roadway, but the bridge keeper stated that there was a little less than 16 feet (5.3 

m) between the extreme rise and the lowest point of depression". Figure 3.2 shows 

a sketch prepared by the author according to the observations above. Again it is 

noted that the bridge must have moved in the first asymmetrical torsion 

eigenmode perhaps combined with the vertical bending mode indicating one or 

two-degree-of-freedom flutter respectively. 

 

Figure 3.2 Authors’ sketch of the undulations of the Menai Bridge in the storms of 1826 and 1836 

as inferred from the bridge keepers account.  

The wrecking of the early suspension bridges by high winds did not promote theo-

retical research into the observed behavior. One reason being that the science of 

aerodynamics had not matured to an understanding of how forces (crosswind) 

were to develop on a structure perpendicular to the general direction of the wind 

flow. The necessary physical understanding coined in the Kutta-Jukowski theorem 

which then turned potential flow theory into a powerful aerodynamic tool 

emerged only as the 19th century turned into the 20th century. 

The Victorian bridge engineers responded to the wind susceptibility of their struc-

tures by increasing the stiffness of the bridges by adding stiffening trusses in con-

junction with the roadway decks. This without knowing exactly what stiffening of 

the structure accomplished in terms of aerodynamic stability. However, the stiff-

ening truss proved effective for securing wind stability but at the expense of mate-

rials and increased construction costs. 

3.2 The Tacoma Narrows Bridge collapse 

A little more than 50 years went by from the collapse of the Niagara-Clifton sus-

pension bridge in a storm in 1889 to the spectacular collapse of the Tacoma Nar-

rows suspension bridge in a 19 m/s gale in 1940. The Tacoma Narrows Bridge 

had been oscillating vertically in the wind from its opening on 1 July 1940 to the 

amusement of the public who nicknamed the bridge "Galloping Gertie" but to 

great concern of the engineers. In order to gain insight into the motions the bridge 

was monitored by motion picture cameras, which ensured the astonishing and now 

world famous footage of the oscillations leading to the collapse of the bridge on 7 

November 1940.  
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Figure 3.3 Catastrophic torsion oscillations of the Tacoma Narrows Bridge, 7 November 1940. 

(top row) view from a quartering angle. (bottom row) view along the deck. Tacoma Camera Shop. 

Figure 3.3 reproduces single frames approximately 2.5 sec. apart extracted from 

the movie issued by the Tacoma Camera Shop, demonstrating that the fatal oscil-

lations was in the asymmetrical torsion eigenmode at 0.2 Hz and that the deck 

twisted about 30 - 35 deg. at the quarter span points, very similar to what is 

sketched for the Menai Bridge in Figure 3.2. 

Two days after the collapse the Federal Works Administration initiated a thorough 

investigation led by Amman, von Kármán and Woodruff the foremost experts of 

the day in suspension bridge design, aerodynamics and structural engineering. The 

outcome of the investigation sometimes referred to as the Carmody report [2] was 

delivered on 28th March 1941. The report's conclusion on tests of an elastically 

suspended section model of the bridge at California Institute of Technology 

(GALCIT) states: Convincing evidence from the oscillatory tests are that beyond 

a certain wind velocity negative aerodynamic damping is to be expected in almost 

any suspended bridge structure when it oscillates torsionally. A condition named 

"self-induced" oscillations. Flow visualization pictures, Figure 4.24, demonstrated 

that large vortex structures were formed alternatively on the upper and lower sides 

of the roadway when the deck section model was oscillating in torsion. 
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Besides stating the now obvious fact that: "The Tacoma Narrows Bridge failure 

resulted from excessive oscillations caused by wind action" and the attempt to 

clarify the aerodynamic mechanisms involved in the collapse quoted above, the 

Carmody report concluded that: "Further experiments and analytical studies are 

desirable to investigate the action of aerodynamic forces on suspension bridges". 

The latter conclusion prompted the construction of the suspension bridge wind 

tunnel laboratory at the University of Washington that conducted elaborate tests 

on a 1:50 scale full aeroelastic bridge model of the original bridge to further study 

the aerodynamics involved in the collapse. More important the laboratory con-

ducted extensive full aeroelastic model tests to verify the wind resistance of the 

new truss stiffened suspension bridge to be built as a replacement for "Galloping 

Gertie" [3].  

3.3 Development of theoretical flutter analyses of bridge deck  

The first attempt to apply theoretical aerodynamic analysis to bridge deck flutter 

known to the author is due to Bleich in 1948 [4] who worked as a consultant to 

the Federal Works Administration during the Tacoma Narrows investigations. 

Bleich noted an important aspect of the GALCIT wind tunnel tests of elastically 

suspended        shaped section models similar to the Tacoma Narrows but with 

varying edge girder depth to deck width ratio d/B. For d/B > 6% all models tested 

displayed "self-induced" torsion oscillations at a frequency equal to the still air 

frequency starting at some threshold wind speed but with amplitudes growing 

proportionally to the wind speed once the threshold was exceeded. For section 

models having d/B < 6% "self-induced" oscillations also started at some but dif-

ferent threshold wind speed. However, the oscillations now took on a combined 

vertical bending / torsion form at a common frequency in between the still air ver-

tical bending and torsion frequencies. This characteristic is similar to flutter of 

wing sections (sometimes referred to as classical flutter or two-degree-of-

freedom-flutter) for which Theodorsen [5] developed a very successful theoretical 

treatment 13 years earlier (the flat plate theory). Bleich noted that the truss-

stiffened section tested for the new Tacoma Narrows Bridge also displayed classi-

cal flutter indicating that the truss located under the roadway deck was of little 

importance for aerodynamic instability. Thus, classical flutter was the aerodynam-

ic instability mode to be considered for future suspension bridges. Besides pre-

senting an operational method for calculation of flat plate wind speeds of bridge 

decks Bleich also proposed an extension of the flat plate theory to include oscilla-

tory aerodynamic forces generated at the windward edge of the girder. This theo-

retical extension required determination of two empirical constants from wind 

tunnel tests, which however proved difficult in practice. 

Theodorsens flat plate flutter theory predicts the threshold wind speed for onset of 

flutter, which is a governing parameter in the design of long span cable supported 

bridges. The method is somewhat complicated to apply to practical design cases if 

the analyst does not have access to a computer, as it requires determination of the 

roots of a third and a fourth order algebraic equation. To make flutter speed calcu-
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lations more accessible to practitioners Selberg [6] proposed a simple formula for 

the critical wind speed for onset of flutter based on Bleichs adaptation of The-

odorsens theory. Selbergs formula (to be discussed in section 5.8) is remarkable in 

the sense that it only incorporates the structural parameters of the bridge as varia-

bles (mass, mass moment of inertia, eigenfrequencies and deck width). All aero-

dynamic information is lumped in just one constant. 

Design of the Severn suspension bridge in UK and the Lillebælt suspension bridge 

in Denmark in the 60ies saw development of a new type of bridge deck cross sec-

tion the trapezoidal or semi-streamlined box girder. Aerodynamically this type of 

cross section behaves even more like a flat plate than the truss sections studied by 

Bleich. The advent of the semi-streamlined deck prompted Frandsen [7] to take a 

new graphical approach to the solution of Theodorsens flat plate equations and to 

study the range of validity of Selbergs formula. Frandsens graphical method is 

very simple use and his calculations established that Selbergs formula is accurate 

for torsion to vertical bending frequency ratios larger than 1.5. 

The realization that bridge deck sections in general are aerodynamically different 

from flat plates or airfoils let Scanlan and Tomko [8] to re-launch Theodorsen´s 

theory but now with the theoretically determined aerodynamic flutter coefficients 

preplaced by experimental data obtained from wind tunnel testing of bridge deck 

section models. The aerodynamics of the deck sections is captured in six coeffi-

cients 𝐴1..3
∗ , 𝐻1..3

∗  (often referred to as aerodynamic derivatives) measured as func-

tion of the non-dimensional wind speed. These coefficients allows a clear distinc-

tion between the aerodynamics of one-degree-of-freedom and two-degree-of-

freedom flutter, Figure 3.4. The flutter coefficients of the airfoil (labelled A) all 

display an increase with increasing non-dimensional wind speed 𝑉 𝑁𝐵⁄  where V is 

wind speed N is frequency and B is deck width, a behavior indicating two-degree-

of-freedom flutter. Deck section 4, the deep truss, displays a similar aerodynamic 

behavior in the sense that the 𝐴2
∗  (the aerodynamic damping in torsion) and the 𝐴3

∗  

(the aerodynamic stiffness in torsion) displays similar behavior as the airfoil thus 

two-degree-of-freedom flutter is expected for this deck. Deck section 1, the origi-

nal Tacoma Narrows Bridge, behaves distinctly different. The 𝐴2
∗  coefficient starts 

out being negative as is the case for the airfoil however, at some non-dimensional 

wind speed it changes sign to become positive, which is an indication of one-

degree-of-freedom flutter. It is also noted that the aerodynamic stiffness coeffi-

cient 𝐴3
∗  for the Tacoma section is negligible indicating that torsion flutter will 

occur at the same frequency as the structural eigenfrequency in absence of wind. 

Deck sections 2 and 3 displays both monotonically increasing 𝐴3
∗  coefficients and 

zero crossing of 𝐴2
∗  indicating that the flutter mode for these decks will depend on 

which aerodynamic phenomenon sets in at the lowest non-dimensional wind 

speed. Scanlan and Tomkos approach to flutter analysis will be discussed in much 

more detail in section 5. 
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Figure 3.4 Flutter coefficients or aerodynamic derivatives measured for different bridge deck sec-

tions. Adapted from [8]. 

4.  One-degree-of-freedom Flutter 

Following the Tacoma Narrows incident designers shied away from plate girders 

with deep facia beams for long span suspension bridges and with good reason. 

Plate girder deck sections akin to a shallow H or an inverted channel (sometimes 

referred to as π-sections) are however, still very popular for medium span cable-

stayed bridges on the account of economy and constructability. For these types of 

bridges, the torsion stiffness can often be enhanced considerably by anchoring the 

cable-stays at the edges of the girder and thus secure a high critical wind speed for 

flutter. Notable examples of bridges featuring plate girder cross sections are Alex 

Fraser (Canada), Busan-Goje (Korea), Second Severn and Kessock (UK). Evalua-

tion of flutter of plate girder bridges during design relies on direct wind tunnel 

testing or extraction of flutter derivatives form the literature for decks of similar 

geometry. This chapter presents an analytical treatment of the one-degree-of-

freedom flutter problem with the objective of understanding the physics involved 

and arriving at a simple formula for the critical wind speed similar to the Selberg 

formula applicable to two-degree-of-freedom-flutter. In order to pursue this goal 

some fundamental mechanical concepts and results from the original Tacoma Nar-

rows wind tunnel tests will be revisited. 
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4.1 Work supplied to a rotary mechanical system 

Fundamental mechanics defines the instantaneous power at time (𝑡) supplied by 

an external moment rotary mechanical system as: 

𝑃(𝑡) = 𝑀(𝑡)𝛼̇(𝑡) (4.1) 

Where 𝑀(𝑡) is the external moment and 𝛼̇(𝑡) is the angular velocity which are 

both functions of time 𝑡. As power is the time derivative of work:  

𝑃 =
𝑑𝑊

𝑑𝑡
 (4.2) 

The work done by the external moment over a time interval 𝑡0 to 𝑡 is obtained as: 

𝑊 = ∫ 𝑀(𝑡)𝛼̇(𝑡)𝑑𝑡
𝑡

𝑡0

 (4.3) 

As a basic example, let us consider the work dissipated by viscous damping dur-

ing one period of stationary rotary oscillations. The moment 𝑀𝑑(𝑡) supplied by 

viscous damping is proportional to the angular velocity which is 𝜋 2⁄  phase shift-

ed relative to the angular displacement 𝛼(𝑡) =  𝛼 sin(𝜔𝑡): 

𝑀𝑑(𝑡) =
𝛿𝑠

𝜋
𝐼𝜔2𝛼 cos(𝜔𝑡) =

𝛿𝑠

𝜋
𝐼𝜔2𝛼 sin(𝜔𝑡 − 𝜋 2⁄ ) (4.4) 

Where 𝜔 is radian frequency, 𝛿𝑠 is the logarithmic decrement and 𝐼 is the mass 

moment of inertia of the oscillating body. The work dissipated by viscous damp-

ing over one circle of oscillation with period 2𝜋 𝜔⁄  is obtained from (4.3): 

𝑊𝑑 = ∫ 𝑀(𝑡)𝛼̇(𝑡)𝑑𝑡

2𝜋
𝜔

0

=
𝛿𝑠

𝜋
𝐼𝜔3𝛼2 ∫ cos2(𝜔𝑡) 𝑑𝑡

2𝜋
𝜔

0

= 𝛿𝑠𝐼𝜔
2𝛼2 (4.5) 

A well-known textbook result. 

4.2 Early wind tunnel test of the Tacoma Narrows cross section and analysis 

Before embarking on the development of a model for one-degree-of-freedom flut-

ter, it is instructive to review some of the aerodynamic characteristics of the Ta-

coma Narrows cross section as presented in the Carmody report [2], Figure 4.1. 

The damping vs wind speed diagram (left) was obtained from recordings of the 

oscillatory response of an elastically suspended section model, Figure 4.2. At low 

wind speeds the model was excited by hand in torsion and decay traces recorded 

from which the logarithmic damping decrement was estimated. At higher wind 

speeds torsion oscillations would self-start and grow to an equilibrium position 

once the model was released. The logarithmic decrement of the growth of the os-

cillations was referred to as "negative damping". From Figure 4.1 it is observed 
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that the damping-mass parameter 𝛿 𝜇⁄  changes from positive to negative at a non-

dimensional wind speed 𝑉 𝑏𝑛⁄  ≈ 4 at which "self-induced" oscillations starts. 

  

Figure 4.1 Aerodynamic damping to model mass ratio 𝛿 𝜇⁄  vs non-dimensional wind speed 𝑉 𝑏𝑛⁄  

(left) and moment and lift coefficients 𝐶𝑀, 𝐶𝐿 vs angle of attack 𝛼0 (right). Note that the lift coeffi-

cient is plotted as 𝐶𝐿/10 to fit the scale of  𝐶𝑀.Data extracted from the Carmody report [2].  

 

Figure 4.2 Elastically suspended 1:80 scale section model of the Tacoma Narrows Bridge in the 

GALCIT wind tunnel [2]. 
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The steady state aerodynamic moment and lift coefficients of the original deck 

section are plotted in Figure 4.1 (right). It is noted that the slope of the 𝐶𝑀 curve is 

negative 𝜕𝐶𝑀 𝜕𝛼0⁄ ≈ - 0.49 but that the lift slope is positive 𝜕𝐶𝐿 𝜕𝛼0⁄ ≈ 2.4. 

A comment on the damping mass parameter 𝛿 𝜇⁄  in Figure 4.1 (left) is appropri-

ate. 𝛿 is the logarithmic decrement of the aerodynamic damping i.e. the total 

damping measured for model oscillations in the wind flow subtracted the mechan-

ical damping of the model measured with no wind flow in the tunnel (hereafter 

referred to as 𝛿𝑎). 𝜇 = 𝜌𝐵2 𝑚⁄  is the mass ratio i.e. the density of air 𝜌 multiplied 

by deck width 𝐵 squared divided by model (or bridge) mass per unit length 𝑚. 

The Carmody report states 𝜇 = 0.0207 for the Tacoma Narrows Bridge. It is noted 

that 𝛿 𝜇⁄  is identical in form to the Scruton number 𝑆𝑐 =  2𝛿𝑚 𝜌𝐵2⁄  save a factor 

of 2. 

Prediction of the critical wind speed for onset of one-degree-of-freedom flutter 

from experimental data such as Figure 4.1 (left) follows from balancing the aero-

dynamic and structural damping. Figure 4.3 shows the mean line of the aerody-

namic damping-mass parameter as function of the non-dimensional wind speed 

𝑈 𝑓𝐵⁄  as given in the Carmody report. The critical wind speed is obtained as the 

abscissa of the intersection of the 𝛿𝑎 𝜇⁄  curve and a horizontal line at the ordinate 

𝛿𝑠 𝜇⁄ . From Figure 4.3 the non-dimensional wind speed for onset of one-degree-

of-freedom flutter for the Tacoma Narrows cross section is identified as 𝑈 𝑓𝐵⁄  = 

4.8. The equivalent full scale wind speed is then obtained as 4.8⋅ 𝐵 ⋅ 𝑓 = 4.8⋅11.9 

m ⋅0.2 Hz = 11.5 m/s by inserting the deck width of 11.9 m and the torsion fre-

quency 0.2 Hz (Table 4.1).  

  
Figure 4.3 Identification of the critical wind speed for onset of one-degree-of-freedom flutter from 

wind tunnel data by balancing the aerodynamic and structural damping. 
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At this point, it is of interest to investigate to what degree the static aerodynamic 

data given in Figure 4.1 (right) can explain the "self-induced" oscillations ob-

served in the dynamic wind tunnel test. We start out by considering a one-degree-

of-freedom oscillator model subjected to an external forcing moment. 

𝐼𝛼̈ +
𝛿𝑠

𝜋
𝐼𝜔𝛼𝛼̇ + 𝐼𝜔𝛼

2𝛼 = ½𝜌𝑈2𝐵2
𝜕𝐶𝑀

𝜕𝛼0
𝜃(𝑡) (4.6) 

Where 𝜔𝛼is the eigenfrequency, 𝑈 is the mean wind speed and 𝜃(𝑡) is the apparent 

angle of attack as function of time. Modelling of the external forcing moment 

adapts the classic quasi-steady approach, assuming that it is proportional to the 

moment slope multiplied by the apparent angular deflection (𝜕𝐶𝑀 𝜕𝛼0)𝜃⁄ . From 

Figure 4.1 this (right) model is estimated to be valid for angles of attack in the 

interval -5
0
 < 𝜃 < 5

0
. 

The apparent angular deflection 𝜃 for a cross section in angular motion in a fluid 

flow is different from that of a stationary section or a section performing oscilla-

tions in a quiescent fluid as the fluid flow creates a pressure distribution which is 

asymmetrical with respect to the centre line of the section. From geometrical con-

siderations (see section 5.1) it can easily be shown that: 

𝜃 = 𝛼 +
𝑟𝐵

𝑈
𝛼̇ (4.7) 

where 𝑟 is the non-dimensional location of the centre of pressure away from the 

mid-chord position and can be found from steady state load measurements as the 

ratio of the moment slope to the lift slope. 

𝑟 =
𝜕𝐶𝑀

𝜕𝛼0

𝜕𝐶𝐿

𝜕𝛼0
⁄  (4.8) 

For a classical flat plate airfoil having 𝜕𝐶𝑀 𝜕𝛼0 = 𝜋/2⁄  and 𝜕𝐶𝐿 𝜕𝛼0 = 2𝜋⁄ , 𝑟 is 

0.25. For the Tacoma Narrows deck section 𝑟 = -0.49 / 2.4 = -0.204. 

Introducing (4.7) in (4.6) and assuming that the response is harmonic in time (4.6) 

can be rewritten as: 

𝐼(𝜔𝛼
2 − 𝜔2)𝛼 sin(𝜔𝑡) +

𝛿𝑠

𝜋
𝐼𝜔𝛼𝜔𝛼 cos(𝜔𝑡)

= ½𝜌𝑈2𝐵2
𝜕𝐶𝑀

𝜕𝛼0
𝛼 (sin(𝜔𝑡) +

𝑟𝐵𝜔

𝑈
cos(𝜔𝑡)) 

(4.9) 

  

The wind tunnel tests proved that oscillation frequency with and without wind 

was identical and equal to the eigenfrequency 𝜔 = 𝜔𝛼 (aerodynamic stiffness is 

negligible) thus the stiffness and inertia term in (4.9) cancels leaving the structural 

damping and aerodynamic forcing to balance. The work dissipated by structural 

damping was obtained in (4.5). The work performed by the aerodynamic moment 

is obtained from (4.3) as: 
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𝑊𝑎 = ½𝜌𝑈2𝐵2
𝜕𝐶𝑀

𝜕𝛼0
𝜔𝛼2 ∫ (sin(𝜔𝑡) +

𝑟𝐵𝜔

𝑈
cos(𝜔𝑡)) cos(𝜔𝑡)𝑑𝑡

2𝜋
𝜔

0

=  ½𝜌𝑈2𝐵2
𝜕𝐶𝑀

𝜕𝛼0
𝜔𝛼2 ∫

𝑟𝐵𝜔

𝑈
cos2(𝜔𝑡) 𝑑𝑡

2𝜋
𝜔

0

= ½𝜋𝑟𝜌𝑈2𝐵2
𝜕𝐶𝑀

𝜕𝛼0
(
𝐵𝜔

𝑈
) 

(4.10) 

By equating the work dissipated by viscous damping over one cycle to the work 

performed by the aerodynamic moment the resulting aerodynamic damping is 

obtained as follows 

𝛿𝑎 (
𝑈

𝜔𝐵
) =

𝜋

2
(
𝜌𝐵4

𝐼
) (

𝑈

𝜔𝐵
) 𝑟

𝜕𝐶𝑀

𝜕𝛼0
 (4.11) 

Where 𝑈 𝑓𝐵 = 2𝜋 𝑈 𝜔𝐵⁄⁄  is the non-dimensional wind speed. A graphical 

presentation of (4.11) compared to the aerodynamic damping curve of the Carmo-

dy report applying structural and aerodynamic data relevant to the Tacoma Nar-

rows Bridge, Table 4.1. Equation (4.11) illustrates that purely quasi steady con-

siderations produces aerodynamic damping that remains positive at ever increas-

ing wind speeds, thus one-degree-of-freedom flutter instability will not occur if 

other aerodynamic effects are not present.  

 
Figure 4.4 Aerodynamic damping obtained from quasi-steady considerations compared to aerody-

namic damping reported for the GALCIT measurements of the Tacoma Narrows cross section. It 

is noted that the quasi steady aerodynamic damping remains positive for ever increasing wind 

speeds whereas the experimental data displays a shift from positive to negative values at U/fB = 4. 
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𝑚 [kg/m] 𝐼 [kgm
2
/m] 𝑓 [Hz] 𝐵 [m] (𝜕𝐶𝑀 𝜕𝛼0)⁄  (𝜕𝐶𝐿 𝜕𝛼0)⁄  𝛿𝑠 [-] 

8483 177730 0.2 11.9 -0.49 2.4 0.046 
Table 4.1 Structural and aerodynamic properties of the Tacoma Narrows Bridge relevant to eval-

uation of (11). 𝛿𝑠is the still air structural damping estimated from the GALCIT wind tunnel tests 

[2]. 

4.3 Flow simulations for a generic Tacoma Narrows Bridge section  

Flow simulations for a generic representation of the Tacoma Narrows cross sec-

tion was carried out in order to obtain a deeper insight into the fluid structure in-

teraction than can be obtained from the Carmody report.  

 

Figure 4.5 Tacoma Narrows Bridge cross section (left) and two-dimensional DVMFLOW section 

model (right) composed of 200 surface panels.  

  

Figure 4.6 Pictures of the wrecked Tacoma Narrows Bridge displaying the layout of the cross 

girders, longitudinal stringers and K-bracing supporting the concrete roadway slab.  

The cross section of the bridge girder is shown in Figure 4.5 (left) and the surface 

panel model applied in the discrete vortex flow simulations is shown to the right.  
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The panel model reproduces the generic external H-shaped form of the cross sec-

tion but neglects the finer details of the roadway geometry and the longitudinal 

stringers. The three-dimensional arrangement of the cross beams and K-bracings 

supporting the roadway slab are shown in the pictures reproduced in Figure 4.6 

and are obviously neglected in the discrete vortex model. A detailed description of 

the discrete vortex code DVMFLOW applied in the following discussion is pre-

sented by Larsen and Walther [9]. 

The steady state external moment an lift acting on the cross section was obtained 

by running the panel model at 23 angles of attack 𝛼0 (incidence to the horizontal 

inflow) in the range -40
0
 < 𝛼0 < 40

0
 Figure 4.7.  

 

Figure 4.7 Moment coefficient 𝐶𝑀 (□) and lift coefficient 𝐶𝐿/20 (○) for the generic H-shaped cross 

section obtained from discrete vortex simulations. Polynomial fit to 𝐶𝑀 (▬). 

The discrete points of the 𝐶𝑀 curve obtained from the flow simulations are fitted by 

third order polynomials yielding the following expression for the moment coeffi-

cient as function of angle of attack. 

𝐶𝑀(𝛼0) = {
−0.774𝛼0 − 2.627𝛼0

2 − 2.352𝛼0
3, 𝛼0 < 0

−0.774𝛼0 + 2.627𝛼0
2 − 2.352𝛼0

3, 𝛼0 ≥ 0
 (4.12) 

The moment slope 𝜕𝐶𝑀 𝜕𝛼0⁄  = -0.774 obtained from the flow simulations quoted 

above is very close to the value 𝜕𝐶𝑀 𝜕𝛼0⁄ = -0.77 obtained from high Reynolds 

number experiments conducted in a compressed air wind tunnel, Schewe [10]. 
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The smaller moment slope 𝜕𝐶𝑀 𝜕𝛼0⁄ ≈ - 0.49 estimated from the GALCIT tests is 

speculated to be due to three-dimensional flow around the ends of the section 

model shown in Figure 4.2. An observation first made by Farquharson [3] part I, 

which lead to introduction of end plates on the section models used in the later 

tests of the Tacoma Narrows wind tunnel investigations. 

In order to gain insight into possible phase shifts between structural motion and 

aerodynamic forces a simulation was run in which the section angle of attack was 

changed instantaneously form 0 deg. (horizontally aligned with the direction of 

flow) to 10 deg. nose up at the non-dimensional time 𝑡𝑈 𝐵⁄ = 10.0, Figure 4.8. 

From the simulation it is noted that a large coherent clock-wise rotating vortex 

structure is created once the cross section changes angle of attack. As time pro-

gresses the vortex structure travels downwind from a position close to the upwind 

vertical girder where it is created towards the cross section centroid. At 𝑡𝑈 𝐵⁄ =
11.0 the vortex structure is at a position approximately above the upwind quarter 

chord point. At 𝑡𝑈 𝐵⁄ = 12.0 the vortex has travelled to a position right above the 

centroid and at 𝑡𝑈 𝐵⁄ = 13.0 to a position roughly over the downwind quarter 

chord point.  

 

 

 
 

 

Figure 4.8 Vortex formation and development of lift and moment coefficients following a sudden 

change of angle of attack of the generic Tacoma Narrows cross section and the definition of the 

vortex drift time 𝑇 = 𝑇∗·𝐵/𝑈. The moment coefficient is multiplied by a factor 5 to fit the same 

scale as the lift coefficient. 

From the development of lift (𝐶𝐿) and moment coefficient (𝐶𝑀) about the cross 

section centroid the following observations are made: At 𝑡𝑈 𝐵⁄ < 10.0 before the 

sudden change of angle of attack the force and moment coefficients oscillates 

about a zero mean value. At 𝑡𝑈 𝐵⁄ = 10.0 following the abrupt change in angle of 

attack and short duration transients, the lift coefficient changes to oscillate about a 

𝑡𝑈 𝐵⁄ = 13.0 𝑡𝑈 𝐵⁄ = 11.0 

𝑇∗ ≃ 2.0 

𝑡𝑈 𝐵⁄ = 12.0 

𝑡𝑈 𝐵⁄  
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positive mean value of 𝐶𝐿 ≃ 1.5. The moment coefficient on the other hand starts 

out at 𝑡𝑈 𝐵⁄ = 10.0 being positive 𝐶𝑀 ≃ 0.4 (nose-up) but decreases with in-

creasing time. At 𝑡𝑈 𝐵⁄ = 12.0 𝐶𝑀 ≃ 0.0 which coincides with the large travel-

ling vortex structure being located above the cross section centre line. At 𝑡𝑈 𝐵⁄ >
12.0 when the travelling vortex has moved to a position downwind of the centre 

the moment coefficient becomes negative. At 𝑡𝑈 𝐵⁄ = 14.0 the travelling vortex 

structure passes the downwind vertical girder and the moment coefficient shortly 

reverts to 𝐶𝑀 ≃ 0.0. At 𝑡𝑈 𝐵⁄ > 14.0 the moment coefficient oscillates about a 

negative mean value while the lift coefficient remains positive. Figure 4.8 demon-

strates that the creation and drift of the large coherent vortex structure introduces 

a phase lag between the angular displacement and the steady state force. In case 

there had been no phase delay, the mean of the moment coefficient would have 

become negative and proportional to the angular displacement immediately upon 

the step change of the inflow angle in agreement with Figure 4.7.  

Of particular importance to the physical model for the resulting instability to be 

presented in section 4.5 is the drift-time 𝑇∗ i.e. the non-dimensional time it takes 

the vortex to travel from the position where it is formed at the upwind girder to 

the position above the cross section centre. From Figure 4.8 the drift time is esti-

mated as 𝑇∗ ≃ 2 in good agreement with physical observations made by Kubo et. 

al. that coherent vortex structures travels along the surface of a bluff section at a 

speed of about 25% of the speed of the free flow, [12]. The formation and drift of 

coherent vortices shown in Figure 4.8 allows formulation of the following physi-

cal model for the fluid-structure interaction: 

1) Each time the cross section changes angle of attack away from main direction 

of the flow a vortex will be shed just behind the upwind vertical girder. When the 

cross section changes angle of attack to a nose-up position the vortex rotates 

clock-wise and is shed at the upper horizontal part of the cross section. When the 

cross section changes angle of attack to a nose-down position the vortex rotates 

counter clock-wise and is shed at the lower horizontal part of the cross section.  

2) Once created a vortex structure will travel along the upper or lower horizontal 

part of the cross section with a speed corresponding to roughly 1 4⁄  of the speed of 

the free flow. 

A key assumption in the development of the flutter derivatives as presented by 

Scanlan [8] and shown in Figure 3.4, is that they are independent of the amplitude 

of motion of the deck cross section. In the present case of the generic shallow H-

section Figure 4.5, the 𝐴2
∗  aerodynamic derivative was obtained from DVMFLOW 

forced motion simulations for four different torsion amplitudes 𝛼 = 5
0
, 10

0
, 20

0
 

and 45
0
 and is shown in Figure 4.9. The result (adopting Scanlans original nor-

malization by twice the dynamic head 𝜌𝑈2) reveals that 𝐴2
∗  assumes more or less 

the same values for 𝛼 = 5
0
 and 10

0
 but decreases with increasing amplitude. 
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Figure 4.9 DVMFLOW simulations of the 𝐴2
∗  aerodynamic derivative for torsion amplitudes 𝛼 = 

5
0
, 10

0
, 20

0
 and 45

0
. 

If 𝐴2
∗  obtained for 𝛼 = 20

0
 and 45

0
 are multiplied by 𝛼 𝛼𝑟𝑒𝑓⁄  where 𝛼𝑟𝑒𝑓 = 10

0
, the 

𝐴2
∗  derivatives will more or less collapse on one curve Figure 4.10 suggesting a 

1 𝛼⁄  dependence of the 𝐴2
∗  aerodynamic derivative for 𝛼 > 10

0
. 

 

 

Figure 4.10 The simulated 𝐴2
∗  curves shown above collapsed through multiplication with the ratio 

of actual amplitude 𝛼 to 𝛼𝑟𝑒𝑓 = 100. 
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4.4 Year 2000 travelling point vortex model for one-degree-of-freedom-flutter 

At the 60 year anniversary of the Tacoma incident the present author utilized a 

rather busy sketch, Figure 4.11, to develop a physical model for the threshold 

wind speed of one-degree-of-freedom flutter which lead to the collapse of bridge 

[13]. This model has generally been accepted as providing a satisfactory physical 

explanation for aerodynamic excitation leading to the collapse [14], [15]. The ar-

gument involved in the development of the model was based on the vortex dy-

namics observed in Figure 4.8 and on the power supplied to the cross section by 

the fluid over a half period of oscillation. 

 

Figure 4.11 Instability model based on work supplied to the cross section by the fluid (travelling 

point vortices). From [13]. 

½𝑇𝑠 = 𝑇∗𝐵/𝑈 

½𝑇𝑠 > 𝑇∗𝐵/𝑈 

½𝑇𝑠 < 𝑇∗𝐵/𝑈 
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When the vertical vortex force 𝐹𝑣 is in the same direction as the local vertical ve-

locity 𝑧̇ of the cross section just below the vortex the fluid supplies a power input 

to the cross section. When the vortex force and the structural velocity are opposite 

power is extracted from the cross section. Summing the power exchange over half 

a period of structural (torsion) oscillation ½𝑇𝑠 it is illustrated that the work is pos-

itive if half the oscillation period is longer than the drift time ½𝑇𝑠 > 𝑇∗𝐵/𝑈, the 

work is negative if half the oscillation period is shorter the drift time ½𝑇𝑠 <
𝑇∗𝐵/𝑈 and exactly balances if half the oscillation period becomes equal to the 

drift time ½𝑇𝑠 = 𝑇∗𝐵/𝑈. Taking 𝑇∗ = 2 the incipient or critical wind speed for 

the associated instability is obtained as: 

½𝑇𝑠 ≥ 𝑇 ⇒ 𝑈𝑐 ≥ 4𝑓𝛼𝐵 (4.13) 

Where 𝑓𝛼 = 1 𝑇𝑠⁄  is the structural torsion frequency and 𝐵 is the over all section 

width. 

4.5 Point vortex model for the Tacoma one-degree-of-freedom flutter 

The above argument can be recast in a compact mathematical form by expressing 

the power supplied by the vortex to the deck section as the scalar product of the 

vortex force which is taken as constant in time and the vertical velocity of the 

deck at the location of the vortex. Alternatively the power may be expressed as 

the scalar product of the aerodynamic moment and angular velocity of the deck 

about the elastic axis. 

In mathematical terms the vertical force 𝐹𝑣 acting on the deck due to the vortex 

and the angular displacement and velocity 𝛼, 𝛼̇ of the bridge deck are expressed as 

follows: 

𝐹𝑣 = ½𝜌𝑈2𝐵𝐶𝐿,           𝛼 = 𝛼sin (𝜔𝑡), 𝛼̇ = 𝛼ωcos (𝜔𝑡) (4.14) 

Where 𝛼 is the torsion amplitude (in radians) and 𝜔 = 2𝜋𝑓 the torsion radian 

frequency. 

The torsion velocity of the deck at the location of the vortex then becomes: 

𝛼̇ = 𝛼ωcos (𝜔𝑡)
𝐵

2
(1 −

𝑡

𝑇
) (4.15) 

Alternatively the aerodynamic moment supplied by the travelling vortex 𝑀𝑣(𝑡) 

may be taken as a function of time: 

𝑀𝑣(𝑡) = 𝐹𝑣

𝐵

2
(1 −

𝑡

𝑇
) =

𝜌𝐵2𝑈2𝐶𝑀0

4
(1 −

𝑡

𝑇
) (4.16) 

The work performed by the travelling leading edge vortex is obtained combining 

(4.3) and (4.16): 

𝑊𝑣 = ∫ 𝑀(𝑡)𝛼̇(𝑡)𝑑𝑡
2𝑇

0

=
𝜌𝐵2𝑈2𝐶𝑀0

4
𝛼 ∫ (1 −

𝑡

𝑇
)𝛼𝜔 cos(𝜔𝑡) 𝑑𝑡

2𝑇

0

 (4.17) 
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Where the upper limit of the integral 𝑡 = 2𝑇 is the time it takes for the point vor-

tex to travel from the leading edge to the trailing edge of the deck section. 

Evaluation of the integral in (16) yields (see Appendix A): 

𝑊𝑣 =
𝜌𝐵2𝑈2𝐶𝑀0

4
𝛼 (

1

𝜔𝑇
(1 − cos(2𝜔𝑇)) − sin(2𝜔𝑇)) (4.18) 

Introduction of the non-dimensional vortex drift time 𝑇 = 𝑇∗𝐵 𝑈⁄ = 2𝐵 𝑈⁄  al-

lows the work performed by the travelling vortex to be expressed in terms of the 

non-dimensional wind speed 𝑈 𝜔𝐵⁄ : 

𝑊𝑣 =
𝜌𝐵2𝑈2𝐶𝑀0

4
𝛼 (

𝑈

2𝜔𝐵
(1 − cos (

4𝜔𝐵

𝑈
)) − sin (

4𝜔𝐵

𝑈
)) (4.19) 

In order to recast (4.19) in the form of aerodynamic damping, 𝑊𝑣 is set equal to 

the work 𝑊𝑑 dissipated by viscous damping during the time interval 0 ≤ 𝑡 < 2𝑇: 

𝑊𝑑 =
𝛿𝑎

𝜋
𝐼𝜔3𝛼2 ∫ cos2(𝜔𝑡) 𝑑𝑡 =

𝛿𝑎

2𝜋
𝐼𝜔2𝛼2 (2𝜔𝑇 +

sin(4𝜔𝑇)

2
)

2𝑇

0

 (4.20) 

or when introducing the vortex drift time 𝑇 = 𝑇∗𝐵 𝑈⁄ = 2𝐵 𝑈⁄ : 

𝑊𝑑 =
𝛿𝑎

2𝜋
𝐼𝜔2𝛼2 (

4𝜔𝐵

𝑈
+

1

2
sin (

8𝜔𝐵

𝑈
)) (4.21) 

Finally putting 𝑊𝑑 = 𝑊𝑣 yields an expression for the aerodynamic damping 𝛿𝑎𝑝 

associated with the travelling point vortex as function of non-dimensional wind 

speed: 

𝛿𝑎𝑝 (
𝑈

𝜔𝐵
)

=
𝜋

2
(
𝜌𝐵4

𝐼
) (

𝑈

𝜔𝐵
)
2 𝐶𝑀0

𝛼

(
𝑈

2𝜔𝐵 (1 − cos (
4𝜔𝐵
𝑈 )) − sin (

4𝜔𝐵
𝑈 ))

(
4𝜔𝐵
𝑈 +

1
2 sin (

8𝜔𝐵
𝑈 ))

 

(4.22) 

From (4.22) it is noted that the aerodynamic damping associated with the travel-

ling point vortex displays a 1 𝛼⁄  dependence as indicated by the 𝐴2
∗  DVMFLOW 

simulations discussed in section 4.3. 

The aerodynamic damping divided by mass ratio 𝛿𝑎𝑝/𝜇 as function of non-

dimensional wind speed 𝑈 𝑓𝐵⁄ = 2𝜋𝑈 𝜔𝐵⁄  obtained from (4.22) is plotted in 

Figure 4.12 with the mean curve of the damping measurements given in the Car-

mody report Figure 4.1 (left). It is assumed that 𝐶𝑀0 = 0.4 in accordance with 

Figure 4.18 
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Figure 4.12 Aerodynamic damping / mass ratio as function of non-dimensional wind speed ob-

tained from (4.22) and compared to the mean curve published in Figure 27 of the Carmody report. 

𝛼 = 10
0
, 𝐶𝑀0 = 0.4, 𝜇 = 0.0207. 

4.6 Critique of the travelling point vortex model 

Green and Unruh [16] reviewed the travelling point vortex model proposed by the 

author (section 4.4) above and agreed that it predicts the onset wind speed of the 

instability. From Green and Unruhs mathematical representation of work done by 

the travelling vortex, they found that the theory predicted the expected onset of 

the instability at a non-dimensional wind speed of about 4 but that it failed at 

higher wind speeds. First, they observed that the behaviour of their predicted 

damping curve displayed a peak value at a full-scale wind speed of approximately 

22 m/s and decreasing at higher wind speeds, Figure 4.13 (left), was never ob-

served in wind tunnel tests. Secondly, Green and Unruh argued that the physics of 

the flow at high wind speeds is different to that of a travelling point vortex. Ra-

ther, the vortex formed when the leading edge starts to raise stays attached to the 

windward vertical girder and grows to cover the whole deck during the first quar-

ter of the oscillation period. When the windward girder starts to travel downward 

again, this large vortex will detach and is swept across the deck past the down-

wind vertical girder. The action of the distributed vortex may thus be different to 

that of a travelling point vortex. 

0 2 4 6 8 10 12

4-

4

8

12

16

20

24

28

Carmody

Point vortex

U/fB

-
a/



58 Allan Larsen. Bridge Deck Flutter Analysis  

 

 

 

 

  

Figure 4.13 Predicted normalized aerodynamic damping as function of full scale wind speed. Left: 

Adapted from Green and Unruh [16]. Right: Authors prediction (21) assuming that the work sup-

plied by the travelling vortex is balanced by damping dissipated over half an oscillation cycle. 𝛼 = 

5
0
, 𝐶𝑀0 = 0.4. 

In an attempt to clarify the alleged failure of the point vortex model at higher 

wind speeds, the author experimented with different mathematical models. One 

attempt involved balancing the work performed by the travelling point vortex by 

work dissipated by viscous damping over half an oscillation cycle of the deck. 

The result given in (4.23) taking 𝑇∗ = 2 is displayed in Figure 4.13 right. It is not-

ed that the damping curve in Figure 4.13 left and right are identical (save a differ-

ence on the amplitude scale) indicating that Green and Unruh based their conclu-

sion on an incorrect balance of work. 

𝛿𝑎𝑝 (
𝑈

𝜔𝐵
) = (

𝜌𝐵4

𝐼
) (

𝑈

𝜔𝐵
)
2 𝐶𝑀0

2𝛼
(

𝑈

2𝜔𝐵
(1 − cos (

4𝜔𝐵

𝑈
)) − sin (

4𝜔𝐵

𝑈
)) (4.23) 

Green and Unruh’s mathematical model for the growing/travelling vortex at high 

wind speeds is not quite clear from their physical explanation neither from their 

resulting mathematical expression for work given in [16]. 

4.7 Extension of the travelling point vortex model to high wind speeds  

The comments by Green and Unruh inspired the present author to extend the trav-

elling point vortex model to include quasi steady effects that might become im-

portant once half the oscillation period becomes longer than the time it takes for 

the vortex to travel from the leading edge to the trailing edge of the deck section. 

When the travelling vortex has swept past the trailing edge at 𝑇∗ = 4 the cross 

section is still subject to an aerodynamic moment having a non-zero mean, By 

combining the travelling vortex and the quasi-steady moment the physical model 

sketched in Figure 4.14 is arrived at. This model is expected to be applicable at 
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high wind speeds when a vortex sweeps faster across the deck than half the period 

of the torsion motion, i.e. at wind speeds 𝑈 ≥ 8𝐵𝑓. 

 

Figure 4.14 High wind speed model combining travelling vortex and quasi-stationary aerodynamic 

forces on a shallow H section. 

The high wind speed behavior is summarized as follows: At the start of the oscil-

lation period when the windward edge rises a vortex is formed which will travel 

across the deck precisely as in the low wind speed case. However, the vortex will 

have swept past the downwind edge before the deck has completed half a period 

of the torsion oscillation. When the windward girder reaches the highest point of 

the oscillation the vortex covers the whole deck section. Once the vortex is clear 

of the deck section its presence is no longer felt by the deck and the quasi-steady 

wind forces govern the aerodynamic action on the deck. As the quasi-stationary 

moment is negative (opposite the angle of attack) the action is to force the cross 

section to lower angles of attack. The work exerted by the vortex and the quasi-

steady aerodynamic forces in combination is now found simply as the sum of the 

contributions from the drifting point vortex and the quasi-steady moment: 

𝑊𝑣 + 𝑊𝑞 = ∫ 𝑀𝑣 ∙ 𝛼̇𝑑𝑡
2𝑇

0

+ ∫ 𝑀𝑞 ∙ 𝛼̇𝑑𝑡
½𝑇𝑠

2𝑇

 (4.24) 

The evaluation of the first integral proceeds exactly as for (4.17) reference is 

made to appendix A. For evaluation of the second integral the quasi-steady mo-

ment is expressed as 𝑀𝑞 = ½𝜌𝑈2𝐵2𝐶𝑀(𝛼) where 𝐶𝑀(𝛼) is the moment coeffi-

cient as a function of the angle of attack. The work 𝑊𝑞 exerted by the quasi-steady 

aerodynamic forces over the period 2𝑇 ≤ 𝑡 ≤ ½𝑇𝑠 = 2𝑇 ≤ 𝑡 ≤ 𝜋 𝜔⁄  is obtained 

as:  

𝑊𝑞 = ½𝜌𝐵2𝑈2 ∫ 𝐶𝑀(𝛼)𝛼𝜔 cos(𝜔𝑡) 𝑑𝑡

𝜋
𝜔

2𝑇

 (4.25) 

Assuming that the angle of attack dependence of the moment coefficient can be 

expressed in a linear fashion similar to (4.6), (4.25) is rewritten as: 

𝑊𝑞 = ½𝜌𝐵2𝑈2 ∫ (𝛼 (sin(𝜔𝑡) +
𝑟𝐵𝜔

𝑈
cos(𝜔𝑡)))𝛼𝜔 cos(𝜔𝑡) 𝑑𝑡

𝜋
𝜔

2𝑇

 (4.26) 

Upon which the integral is evaluated to yield: 
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𝑊𝑞 = −
1

4
𝜌𝐵2𝑈2𝛼2 (sin2(2𝜔𝑇) +

𝑟𝐵𝜔

𝑈
(𝜋 − 2𝜔𝑇 −

sin(4𝜔𝑇)

2
)) (4.27) 

The work 𝑊𝑑 dissipated by viscous damping during the time interval 2𝑇 ≤ 𝑡 ≤
𝜋 𝜔⁄  is obtained as: 

𝑊𝑑 =
𝛿𝑎

𝜋
𝐼𝜔3𝛼2 ∫ cos2(𝜔𝑡) 𝑑𝑡 =

𝛿𝑎

2𝜋
𝐼𝜔2𝛼2 (𝜋 − 2𝜔𝑇 −

sin(4𝜔𝑇)

2
)

𝜋
𝜔

2𝑇

 (4.28) 

Finally, setting 𝑊𝑑 = 𝑊𝑞 and substituting 𝑇 = 𝑇∗𝐵 𝑈⁄ = 2𝐵 𝑈⁄  yields an expres-

sion for the aerodynamic damping 𝛿𝑎𝑞 supplied by the quasi-steady aerodynamic 

forces as function of non-dimensional wind speed: 

𝛿𝑎𝑞 (
𝑈

𝜔𝐵
)

=
−𝜋

2
(
𝜌𝐵4

𝐼
) (

𝑈

𝜔𝐵
)
2
sin2 (

4𝜔𝐵
𝑈 ) +

𝑟𝐵𝜔
𝑈 (𝜋 −

4𝜔𝐵
𝑈 −

sin (
8𝜔𝐵
𝑈 )

2 )

(𝜋 − (
4𝜔𝐵
𝑈 ) −

sin (
8𝜔𝐵
𝑈 )

2 )

 

 

(4.29) 

Evaluation of (4.29) is shown in Figure 4.15. It is noted that the effect of quasi-

steady aerodynamics is to produce positive aerodynamic damping at non-

dimensional wind speeds 𝑈 𝑓𝐵⁄  < 8. At higher wind speeds the quasi-steady aero-

dynamics becomes negative adding to the effect of the travelling vortex. The 

combined effect of the quasi-steady aerodynamics and the travelling vortex on the 

damping is obtained by adding 𝛿𝑎𝑝 and 𝛿𝑎𝑞 given by (4.22) and (4.29). The result 

is also shown in Figure 4.15 compared to the travelling vortex model alone and 

the mean damping given in the Carmody report. The comparison demonstrates 

that the quasi-steady aerodynamics are not particularly important and probably 

within the experimental uncertainty indicated by the measurement points shown in 

the original plot from the Carmody report. 
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Figure 4.15 Aerodynamic damping obtained from the vortex term (▲) (4.22), from the quasi-

steady term (♦) (4.29) and the combined effect 𝛿𝑎𝑣 + 𝛿𝑎𝑞 (■) compared to the mean aerodynamic 

damping curve of the Carmody report. 

4.8 Expanding vortex model 

The point vortex model discussed in section 4.5 may be criticized on two ac-

counts: 1) Realistic 𝑇 and 𝐶𝑀0 must be obtained from other sources for the model 

to work. 2) The concept of a travelling point vortex does not fit actual observa-

tions of the travelling vortex. Flow simulations and experiments show that the 

vortex formed at the leading edge will at first grow in size until the centre reaches 

mid chord. Then the vortex will break away from the leading edge and travel to 

the ¾ chord point where it starts to be lifted off the cross section by recirculating 

flow filling in over the downwind vertical girder, Figure 4.8. To model this situa-

tion a continuous supply of circulation in time at the upwind girder is needed. 

 

 

Figure 4.16 Model of expanding vortex being created at the upwind vertical girder and travelling 

across the deck. 

In order to set up a model for the speed along the bridge deck of the center of an 
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expanding vortex it is assumed that the upwind corner of the vertical girder above 

the deck is the primary source of circulation. A first step is to estimate the circula-

tion Γ0 of this starting vortex once it is fully developed and assumed to have a 

diameter roughly equal to the vertical height ℎ of the upwind girder. The condi-

tion that the wind does not flow through the upwind girder is met in accordance 

with classical potential flow theory by introducing a mirror vortex of equal but 

negative circulation below the deck, Figure 4.17 (left). 

 

 

Figure 4.17 Determination of the circulation strength Γ0 of the leading edge vortex (left). Model 

for the expanding leading edge vortex (right). 

The sum of the tangential induced velocities of this vortex pair must then match 

the oncoming wind speed 𝑈, thus: 

Γ0 =
𝜋

2
ℎ𝑈 (4.30) 

By virtue of the vorticity equation the vorticity (circulation divided by area: Γ 𝐴⁄ ) 

in a quiescent inviscid region is constant. The wake region formed behind the up-

wind girder and above the deck when the section twists away from horizontal is 

assumed to fulfil this condition, thus: 

Γ0 + 𝑑Γ
𝜋
4 ℎ2 + ℎ𝑑𝑥

=
Γ0

𝜋
4 ℎ2

 (4.31) 

Solving (4.31) for 𝑑Γ and inserting in (4.30) yields: 

𝑑Γ = 2𝑈𝑑𝑥 (4.32) 

The time rate of production of circulation at a corner of a bluff body is introduced 

as proposed by Sapkaya [17]: 

𝑑Γ ≈ ½𝑈2𝑑𝑡 (4.33) 

which when inserted in (4.33) yields the following estimate of the growth rate of 

the vortex front: 

𝑑𝑥

𝑑𝑡
≈

𝑈

4
 (4.34) 

Hence, the apparent travelling speed Uv of the vortex is estimated as: 
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𝑈𝑣 =
𝑑𝑥

𝑑𝑡
≈

𝑈

4
 (4.35) 

With the source of circulation fixed at the upper edge of the vertical windward 

girder the time rate of circulation shed over the deck is approximated by the time 

integral of Sapkaya's source equation: 

Γ = ½𝑈2𝑡 (4.36) 

The vortex force assuming to be acting on the deck section at the centre of the 

vortex and the aerodynamic moment about the half chord point (centre of rotation) 

then becomes: 

𝐹𝑣(𝑡) = 𝜌𝑈Γ = ½𝜌𝑈3𝑡 

𝑀(𝑡) = 𝐹𝑣(𝑡)
𝐵

2
(1 −

𝑡

𝑇
) = ½𝜌𝑈3

𝐵

2
(1 −

𝑡

𝑇
) 𝑡 

(4.37) 

Yielding a time dependent moment coefficient: 

𝐶𝑀(𝑡) =
1

2
(1 −

𝑡

𝑇
) 𝑡

𝑈

𝐵
 (4.38) 

𝐶𝑀 has maximum 𝐶𝑀𝑚𝑎𝑥 = 1/4 at 𝑡 = 𝑇/2 as illustrated in Figure 4.18. 

 

Figure 4.18 Comparison of 𝐶𝑀(𝑡) functions adopted for the travelling point vortex and expanding 

vortex model superimposed on the 𝐶𝑀(𝑡) signal obtained from DVMFLOW simulations also 

shown in Figure 4.8. 

The 𝐶𝑀(𝑡) function given in (4.38) can only be expected to be valid in the time 

interval 0 < 𝑡 < 𝑇 where the vortex sits close to the horizontal portion of the deck 

surface. For 𝑇 < 𝑡 < 2𝑇 when the vortex has drifted past the section mid chord 

point, it tends to be lifted off the section by recirculating flow filling in from the 

wake and thus loosing strength. As a consequence the moment coefficient at 

𝑡 = 3𝑇 2⁄  is half the value and negative 𝐶𝑀𝑚𝑖𝑛(3𝑇 2⁄ ) = −½𝐶𝑀𝑚𝑎𝑥(𝑇 2⁄ ). 

The work exerted on the section by the expanding vortex follows the same proce-

dure as for (4.17): 
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𝑊𝑣 = ∫ 𝑀(𝑡)𝛼̇(𝑡)𝑑𝑡
2∙𝑇

0

 

=
𝜌𝐵𝑈3𝛼𝜔

4
[∫ (1 −

𝑡

𝑇
) 𝑡 cos(𝜔𝑡) 𝑑𝑡

𝑇

0

−
1

2
∫ (1 −

𝑡 + 𝑇

𝑇
) (𝑡 + 𝑇) cos(𝜔(𝑡 + 𝑇)) 𝑑𝑡

𝑇

0

] 

(4.39) 

After some tedious but straight forward mathematical manipulations the expres-

sions for the aerodynamic damping of the expanding vortex becomes: 

𝛿𝑎𝑒 (
𝑈

𝜔𝐵
) =

𝜋

2𝛼
(
𝜌𝐵4

𝐼
) (

𝑈

𝜔𝐵
)
3

 

(
𝑈

2𝜔𝐵
) sin (

2𝜔𝐵
𝑈

)(3 − 2cos (
2𝜔𝐵
𝑈

)) +
1
2(cos (

4𝜔𝐵
𝑈

) − cos (
2𝜔𝐵
𝑈

)) − 1

(
4𝜔𝐵
𝑈

+
1
2

sin (
8𝜔𝐵
𝑈

))
 

(4.40) 

Progressing from Eq. (4.39) to (4.40) it is assumed that 𝑇 =  𝐵 2𝑈𝑣 ≈ 2𝐵 𝑈⁄⁄  fol-

lowing Eq. (4.35). 

The aerodynamic damping obtained from (4.40) divided by mass ratio 𝛿𝑎𝑒/𝜇 as 

function of non-dimensional wind speed 𝑈 𝑓𝐵⁄ = 2𝜋𝑈 𝜔𝐵⁄  is plotted in Figure 

4.19 with the mean curve of the damping measurements given in the Carmody 

report Figure 4.1 (left). The damping/mass ratio 𝛿𝑎𝑝/𝜇 obtained from the travel-

ling point vortex model (4.22) is also included for comparison. It is noted that 

both models provide quite accurate fits to the experimental data for non-

demensional wind speeds in the range 4 < 𝑈 𝑓𝐵⁄ < 8. The expanding vortex mod-

el displays a better agreement than the point vortex model at 4 < 𝑈 𝑓𝐵⁄ . 

Equation (4.40) can be used as the basis for development of a handy formula for 

the critical wind speed for the onset of one-degree-of-freedom flutter. Taking the 

derivative of 𝛿𝑎𝑒 with respect to the non-dimensional wind speed at 𝑈 𝑓𝐵⁄ = 4. 
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Figure 4.19 Comparison of travelling point vortex model (4.22) and expanding vortex model 

(4.40) to the mean curve published in Figure 27 of the Carmody report. 𝛼 = 10
0
, 𝜇 = 0.0207. 

Solving for 𝑈 𝑓𝐵⁄  and balancing the result to the structural damping 𝛿𝑠 yields the 

following expression for the critical wind speed for onset of one-degree-of-

freedom torsion flutter: 

𝑈𝑐 = 𝑓𝛼𝐵 (4 +
𝜋3

3

𝛼

𝛼𝑟𝑒𝑓
(

𝐼

𝜌𝐵4
) 𝛿𝑠) (4.41) 

For 𝛼 ≥ 𝛼𝑟𝑒𝑓taking 𝛼𝑟𝑒𝑓 = 10
0
 (= 0.175 rad). 

Equation (4.41) is the one-degree-of-freedom equivalent of Selberg's formula 

which is applicable to two-degree-of-freedom flutter as will be discussed in sec-

tion 5.8. 

4.9 Water tunnel flow visualization test 

The conclusions drawn relating to the excitation of torsion galloping of the shal-

low H-section rests on the formation and drift of the large coherent leading edge 

vortex as perceived from the numerical flow simulations, section 4.3. It was thus 

desirable to establish if the drifting leading edge is a true physical phenomenon or 

a function of the numerical simulation procedure. In order to investigate the for-

mation and drift of the leading edge vortex a flow visualization experiment was 

carried out in the closed circuit water tunnel of the Fluid Dynamics Institute, 

ETH, Zürich, Switzerland, Figure 4.20, which has a rectangular cross section 0.1 

m high and 0.3 m wide. Models are mounted on a 0.25 m diameter base-plate in-

serted in the ceiling of the measurement section approximately 0.3 m downstream 
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of the inlet contraction. The water speed in the tunnel is freely adjustable in the 

range 0.05 m/s - 1.0 m/s. The water tunnel incorporates a number of flow visuali-

zation systems including multi-coloured dye and a pulsed 50 Volt DC voltage 

supply designed for hydrogen bubble generation. The hydrogen bubble flow visu-

alization system was applied in the present tests. 

 
Figure 4.20 Closed circuit 0.1 m x 0.3 m water tunnel at ETH, Zürich, Switzerland. 

The measurement set-up comprised prismatic Perspex models of constant cross 

section having a chord length 𝐵 = 0.05 m and a span length of 0.1 m. The models 

were suspended vertically in the tunnel spanning the height of the measurement 

section. The upper end of the models was attached at mid-chord to a vertical shaft 

supported by two ball bearings, thus allowing the model to rotate about the span-

wise mid-chord axis. Outside the tunnel, the shaft carried a crossbar / counter-

weight allowing adjustment of the mass moment of inertia of the shaft / model 

assembly. A helical spring connected to the vertical shaft and the ball-bearing 

support comprised the adjustable torsion spring element, Figure 4.21. The coun-

terweight/crossbar assembly was adjusted to yield a non-dimensional mass mo-

ment of inertia 𝐼 𝜌𝐵4⁄  = 6.2627 / unit length and the torsion spring was adjusted 

to yield an eigenfrequency 𝑓𝛼 = 0.31 Hz of the model assembly in torsion when 

submerged in water. This "slow" setting allowed video recordings using standard 

digital video equipment. The damping of the submerged model assembly was es-

timated as 𝛿𝑠 = 0.16 relative-to-critical from video recordings at zero flow speed. 
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Figure 4.21 Model and flow visualization set-up in the ETH water tunnel. 

The flow about the model was visualized using the hydrogen bubble technique, 

Schraub, Kline, Henry et. al. [18]. A 30 m diameter platinum wire was wrapped 

around the mid-span section of the model and taken outside the tunnel via a canal 

in the vertical shaft to be connected to the cathode (-) of the DC voltage supply. 

The anode (+) was connected to a stainless steel plate projecting from the meas-

urement section ceiling approximately 0.1 m downstream of the model. Hydrogen 

bubbles produced by the electrolysis process at the model surface and trapped in 

the flow were made visible by two light sheets emitted by standard 1000 W slide 

projectors. The flow pattern forming around the oscillating model was viewed 

"end on" and was recorded by a standard digital video camera. 

A comparison between selected physical flow patterns recorded in the water tun-

nel and the corresponding simulated flow patterns developed around the H-section 

at a non-dimensional flow speed U/fB = 9.3 is shown in Figure 4.22. Also Figure 

4.22 presents simulated time traces of the angular displacement from zero degree 

incidence (equilibrium position) and the fluid dynamic moment (50CM) acting at 

the centroid (rotational axis). From the time traces it is noted that the angular re-

sponse is divergent as expected in case of an non-dimensional flow speed twice 

the threshold value. The reason for the divergent oscillations becomes obvious 

when observing the moment trace. It is noted that the moment is oscillatory and is 

leading the response and thus "driving" it. This behaviour is supported by the flow 

visualization clips and flow field simulations shown above and below the time 

traces. 
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Figure 4.22 Comparison of the vortex movement and section twisting motion in a physical water 

tunnel model (hydrogen bubble visualization) and the corresponding discrete vortex model at 

𝑈 𝑓𝐵⁄ = 9.3. The hatched area in the computer model shows the pressure distribution on the cross 

section. A region of low pressure is found below the centre of the vortices. 
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The top left video-clip and flow plot is obtained at non-dimensional time tU/B= 

18.3 where the section is rotating towards the maximum angle of incidence. The 

leading edge vortex is at a position upstream of the centroid leading to minimum 

surface pressure here, thus yielding a nose-up moment. At tU/B = 20.0 the section 

is past the maximum angle of incidence and is being forced toward lower angles 

by the elastic force and the leading edge vortex has drifted to a position just above 

the centroid and the fluid dynamic moment is now zero. At tU/B = 23.5 the sec-

tion has passed the equilibrium position and a new leading edge vortex has 

formed below the section upstream of the centroid yielding a nose-down (nega-

tive) moment.  Still later at tU/B = 25.3 the section has passed the minimum angle 

of incidence and the new leading edge vortex has drifted to a position downwind 

of the centroid exerting a nose-up (positive) moment on the section which act to-

gether with the elastic force. Clearly the fluid dynamic moment, which is induced 

by the vortex formation and drift, drives the cross section in divergent oscillations 

and may be interpreted as "negative" damping. 

To further emphasize the key finding that the leading edge vortex formation and 

drift is responsible for one-degree-of-freedom flutter of elongated bluff sections, 

flow visualization and simulations were carried out for trapezoidal cross section, 

which is known not to be prone to one-degree-of-freedom torsion flutter. The re-

sult is displayed in Figure 4.23 in similar format as Figure 4.22. From the time 

trace of torsion angle and moment it is noted that the oscillations convergent dis-

playing decreasing amplitude with time. The moment trace is more or less in 

phase with the displacement trace indicating negligible fluid dynamic damping. 

An estimate of the damping from the displacement trace yields   0.12 in good 

agreement with the input damping of  = 0.16 (experimental damping level). Re-

view of the flow visualization clips and flow field simulations reveal smaller vor-

tices formed along section surface, but not the large drifting vortex structure that 

was apparent on the H-section shown in Figure 4.22. The absence of the drifting 

leading edge vortex on the trapezoidal box section is taken as a further support for 

the key role on the drifting vortex in one-degree-of-freedom flutter of bluff sec-

tions.  

 

 

 

 

 



70 Allan Larsen. Bridge Deck Flutter Analysis  

 

 

 

 

  

  

 

  

  
Figure 4.23 Simulations and flow visualizations of torsion oscillations of a trapezoidal box cross 

section at non-dimensional flow speed U/fB = 9.3. 

The flow visualizations shown in Figure 4.22 are not the first to reveal the large 

coherent vortex structures forming just downstream of the windward vertical gird-
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er of the shallow H-section. The Carmody report [2] reproduced flow visualiza-

tion pictures obtained in a water tank at the Case School of Applied Sciences. The 

asymmetric and distinct vortex pattern forming on the upper and lower sides of 

the model roadway lead von Kármán to propose that vortex formation behind the 

upwind vertical girder in some way was responsible for the observed self-induced 

vibrations of the deck cross section. 

  

  

Figure 4.24 Visualization of flow about the shallow H-shaped section presented in the Carmody 

report [2]. (a) Section at rest displaying symmetric vortex formation on the upper and lower sides 

of the horizontal road deck. (b), (c), (d) Section performing self-induced torsion oscillations dis-

plays asymmetric vortex formation on the horizontal road deck. 

Similar vortex patterns were also shown in flow visualizations performed by 

Nakamura and Nakashima [19] for the H-shaped section with and without the 

presence of a splitter plate inserted in the wake. An important conclusion of these 

experiments was that the self-induced vibrations were related to vortices forming 

on the cross section itself and not to vortex formation in the wake, which obvious-

ly was prevented when the splitter plate was inserted.  

Miyata [11] in a review paper establishes that: The mechanism of torsional flutter 

lead to the collapse (of the Tacoma Narrows Bridge) was caused by dynamic vor-

tex separation from the windward edges of the vertical stiffening girder that de-

scends along the floor web always synchronized with the torsional motion. This 

statement is backed by the flow visualization pictures reproduced in Figure 4.25 

 

Figure 4.25 Flow visualization of the formation and drift of vortices on a generic model of the 

Tacoma Narrows H-section. From Miyata [11] 

(a) (b) 

 

(c) (d) 
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4.10 Dynamic vortex model for asymmetric deck sections 

The discussion of one-degree-of-freedom flutter has to this point focussed on the 

stability of the shallow H-shaped cross section, which is symmetric about a hori-

zontal plane through the roadway. Other plate girder section designs may be 

asymmetric about a horizontal plane and thus offer different aerodynamic charac-

teristics depending on whether they twist in the nose up or nose down direction. A 

channel shaped section with triangular nose fairings             may thus act aerody-

namically as a semi streamlined trapezoidal box section when twisting nose up-

wards but as a shallow H-section when twisting nose downwards. An estimate of 

the aerodynamic torsion damping for such a type of section can be obtained by 

combining the quasi-steady aerodynamic damping model for flat plate airfoil (11) 

over the first half of an oscillation circle with travelling point vortex model (23) 

over the second half of the oscillation circle. It is assumed that the moment slope 

of the flat plate airfoil is 𝜕𝐶𝑀 𝜕𝛼0 = 𝜋/2⁄  and that the ratio of the moment slope 

to the lift slope is 𝑟 = 0.25. From Figure 4.26 it is noted that the effect of the flat 

plate aerodynamic damping present over one half of the oscillation circle is to 

push the zero crossing of the 𝛿𝑎 𝜇⁄  to higher non-dimensional wind speeds than 

𝑈 𝑓𝐵⁄  = 4 which is characteristic for the travelling vortex model. 

 

Figure 4.26 Combined aerodynamic damping (◊) due to the travelling vortex (□) over half an os-

cillation circle and the aerodynamic damping developed by a flat plate (○) over the other half of 

the oscillation circle. 
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4.11 Vortex models expressed in terms of the 𝐴2
∗  aerodynamic derivative 

Scanlan and Tomko expressed the aerodynamic damping in torsion in terms of the 

𝐴2
∗  aerodynamic derivative, which is a function of non-dimensional wind speed 

and is defined as follows: 

𝐴2
∗ =

2𝐼𝜁𝑎

𝜌𝐵4
=

𝛿𝑎

𝜋
(

𝐼

𝜌𝐵4
) (4.42) 

As will be seen later and perhaps intuitively, it is more appropriate to normalise 

the torsion damping by the rotary inertia ratio 𝐼 𝜌𝐵4⁄  than the linear mass ratio 𝜇 

chosen in the Carmody report. Negative aerodynamic damping responsible for 

self-induced oscillations is thus represented by positive values of 𝐴2
∗ . With the 

above definition the vortex models for the aerodynamic damping are easily con-

verted to expressions for 𝐴2
∗ . The 𝐴2

∗  equivalent of the travelling point vortex 

damping assuming is obtained as: 

𝐴2𝑝
∗ (𝑈∗) =

1

8𝜋2
(𝑈∗)2

𝐶𝑀0

𝛼

(
𝑈∗

4𝜋 (1 − cos (
8𝜋
𝑈∗)) − sin (

8𝜋𝑈∗

𝑈∗ ))

(
8𝜋
𝑈∗ +

1
2 sin (

16𝜋
𝑈∗ ))

 (4.43) 

A similar expression for the expanding vortex model is obtained as: 

𝐴2𝑒
∗ (𝑈∗) =

1

32𝜋3
(𝑈∗)3

1

𝛼
 

(
𝑈∗

4𝜋
) sin (

4𝜋
𝑈∗)(3 − 2cos (

4𝜋
𝑈∗)) +

1
2(cos (

8𝜋
𝑈∗) − cos (

4𝜋
𝑈∗)) − 1

(
8𝜋
𝑈∗ +

1
2 sin (

16𝜋
𝑈∗ ))

 

(4.44) 

Where 𝑈∗ = 𝑈 𝑓𝐵⁄  is the non-dimensional wind velocity. 

A comparison of 𝐴2
∗  obtained from (4.44) and directly from discrete vortex simu-

lations is shown in Figure 4.27. 𝐴2
∗  values obtained from (4.44) are multiplied by 

½ in order to conform to the original normalisation by 𝜌𝑈2𝐵 utilized in [8]. 
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Figure 4.27 Comparison of the 𝐴2
∗  aerodynamic derivative for the shallow H-section obtained from 

(32) and directly discrete vortex simulations. 

4.12 The Tacoma Narrows collapse and von Kármán vortex shedding excitation 

The Tacoma Narrows Bridge collapse is sometimes attributed to resonance be-

tween von Kármán vortex shedding in the wake of the bridge girder and the 

eigenmodes of the bridge – a wrong conclusion as thoroughly explained by Billah 

and Scanlan [20]. In view of this common misunderstanding, it is appropriate to 

stress the fundamental difference between the travelling point vortex process lead-

ing to one-degree-of-freedom flutter and that of classical von Kármán vortex 

shedding. One-degree-of-freedom flutter or torsion flutter is controlled entirely by 

the time-scale of the structural motion, i.e. the torsion frequency. The instability 

will be encountered once the wind speed transcends the critical value given by 

(4.41) at which more energy is supplied by the wind than dissipated by the struc-

tural damping. In contrast the frequency 𝑓𝑣 of von Kármán vortex shedding is 

governed by a time-scale set by a characteristic dimension of the section 𝐵 and the 

approach mean wind speed 𝑈. Vortex shedding response is understood as a reso-

nance phenomenon occurring at wind speeds when the vortex shedding frequency 

𝑓𝑣 is close to or coincides with a structural eigenfrequency 𝑓. The University of 

Washington report [3] identifies the relationship between wind speed, deck width 

and vortex shedding frequency as 𝑈 𝑓𝑣𝐵⁄ = 2.06. This is only half the non-

dimensional wind speed for onset of the torsion instability and at = 𝑈 𝑓𝑣𝐵⁄ =2.06 

the section possesses positive aerodynamic damping according to the GALCIT 

experimental data in Figure 4.1 (left). At a wind speed of 19 m/s the von Kármán 

vortex shedding frequency would be 𝑓𝑣 = 0.77 Hz almost 4 times the torsion fre-

quency 𝑓 =0.2 Hz of the bridge and thus way off resonance. 

0 2 4 6 8 10

0.2-

0.2

0.4

0.6

0.8

1

1.2

DVMFLOW 10 deg

Expanding vortex

Point vortex

U* = U/fB

A
2

*



                                                                               Allan Larsen. Bridge Deck Flutter Analysis 

 

 

 75 

As mentioned in section 3.2, the Tacoma Narrows Bridge had encountered von 

Kármán vortex shedding oscillations at many occasions during its short life but 

always in a vertical mode [2], [3]. From Figure 4.28 it is quite clear that the verti-

cal von Kármán oscillations (1-V, 2-V) are of limited amplitude and that they oc-

cur in a limited wind speed range starting when the vortex shedding frequency 

becomes at resonance with the structural eigenfrequency. In contrast, the response 

in the torsion mode (1-T) grows with increasing amplitudes for increasing wind 

speeds once a threshold wind speed has been exceeded. 

 

Figure 4.28 Wind induced response as function of model wind speed of the 1:50 scale Tacoma 

Narrows full aeroelastic bridge model tested at the University of Washington Experimental Station 

[3]. The heavy dashed line marks the onset wind speed of flutter calculated according to (4.13). 

  



76 Allan Larsen. Bridge Deck Flutter Analysis  

 

 

 

 

5.  Two-degree-of-freedom Flutter 

Having discussed a mathematical model for one-degree-of-freedom flutter in de-

tail it is appropriate to review the fundamentals of the mathematical model for 

two-degree-of-freedom bridge flutter as an introduction to recent developments in 

the field. Before embarking on the development of the aerodynamic loading on a 

bridge deck undergoing small amplitude in oscillatory motion, it is helpful to re-

view the physics of the steady-state lift and moment developed on a generic mod-

el of a semi-streamlined bridge deck at a small angle of incidence to the wind. 

5.1 Vortex model of a stationary bridge deck at incidence to the wind 

Streamlined bridge decks and airfoils experience a crosswind lift and twisting 

moment when subjected to a steady stream of air at incidence. The simplest possi-

ble model of the resulting aerodynamic forces is a single potential flow vortex 

located at the ¼ chord point of the deck, Figure 5.1. The strength 𝛤 of the bound 

vortex and thus lift and moment is found by equating the circumferential velocity 

𝑤 introduced by the vortex in the ¾ chord point (control point) to the vertical pro-

jection of the free stream velocity 𝑈 normal to the deck nose-tail line (chord). This 

is a manifestation of the Kutta-Jukowski theorem which states that that flow at the 

trailing edge of the deck shall be parallel to the nose-tail line and that the wind 

cannot flow through the solid boundary of the deck. In mathematical terms this 

simple vortex model follows from the Biot-Savart theorem and may be expressed 

as: 

 

Figure 5.1 Simple vortex model for lift force and moment on a stationary streamlined deck section 

at incidence to the wind. The right hand coordinate system is chosen to have the vertical axis posi-

tive downwards in accordance with Theodorsens theoretical treatment [5] 

𝑈 sin 𝛼 + 𝑤 ≈ 𝑈𝛼 + 𝑤 = 𝑈𝛼 +
𝛤

2𝜋(𝑥1/4 − 𝑥3/4)
= 0 (5.1) 

The lift force 𝐿 is related to the circulation as follows: 

𝐿 = 𝜌𝑈𝛤 (5.2) 
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Thus the lift coefficient is obtained as: 

𝐶𝐿 =
𝐿

½𝜌𝑈2𝐵
=

𝛤

½𝑈𝐵
 (5.3) 

Inserting 𝑥1/4 = −𝐵 4⁄  and 𝑥3/4 = 𝐵 4⁄  in (5.1) and substituting the resulting cir-

culation in (5.3) yields the well-known results for the lift and moment coefficients 

relative to the mid-chord position: 

𝐶𝐿 = −2𝜋𝛼 (5.4) 

𝐶𝑀 =
𝑀

½𝜌𝑈2𝐵2
=

𝐿 ⋅ (−𝐵 4⁄ )

½𝜌𝑈2𝐵2
=

𝜋

2
𝛼 (5.5) 

The lift and moment slopes are finally obtained from (5.4) and (5.5) by differenti-

ation with respect to 𝛼: 

𝜕𝐶𝐿

𝜕𝛼
= −2𝜋 (5.6) 

𝜕𝐶𝑀

𝜕𝛼
=

𝜋

2
 (5.7) 

The lift and moment slopes in (5.6) and (5.7) are theoretical values determined by 

potential flow theory which does not account for real fluid effects such as viscosi-

ty. In a real viscous flow internal shear forces will create a boundary layer which 

will tend to separate once the angle of attack 𝛼 reaches angles of about 15 deg in 

which case (5.6) and (5.7) are no longer valid. Geometrical obstacles such as fi-

nite thickness of the bridge deck and railings also tend to promote flow separation 

and thus make lift and moment coefficients for real bridge deck structures diverge 

from the potential flow values. 

5.2 Vortex model for aeroelastic loads on a bridge deck in oscillatory small 

  amplitude motion 

 

Figure 5.2 Simple vortex model for a bridge deck in oscillatory bending motion and twist about 

mid-chord indicating position of bound vortex and vertical wake extending form the trailing edge 

to infinity. 
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The single vortex model is still valid for streamlined bridge decks in small ampli-

tude oscillatory motion but the strength of the bound vortex is modified by a con-

tinuous vortex sheet shed in the wake of the deck by virtue of the Helmholtz theo-

rem. This configuration is sketched in Figure 5.2 

The strength of the wake vorticity 𝛾 is governed by the time rate of change of the 

strength of the bound vortex thus the lift force in the ¼ chord point will now have 

a component in phase with the structural displacement as well as in phase with the 

structural velocity of the ¾ chord point and will be of smaller amplitude. Splitting 

of the aerodynamic forces into components in phase with structural displacement 

and velocity is a consequence of the oscillatory trailing wake and the aerodynamic 

factor governing for two-degree-of-freedom flutter. Non-circulatory effects asso-

ciated with the finite chord length of the deck cannot be predicted from the single 

vortex model but must be introduced from Thoedorsens theory [5] in which the 

bound circulation is distributed along the chord length of the deck. 

The model for the aerodynamic forces acting on the deck section in oscillatory 

motion is obtained similarly to (5.1) by equating the vertical velocity induced by 

the bound vortex and the trailing vertical wake to the vertical structural velocity of 

the ¾ chord point: 

𝑈𝛼 +
𝐵

4
𝛼̇ + ℎ̇ +

𝛤

2𝜋(𝐵 2⁄ )
+

1

2𝜋
∫

𝛾(𝑡, 𝑥)

𝑥3/4 − 𝑥
𝑑𝑥

∞

0

= 0 (5.8) 

For harmonic motion 𝛼(𝑡) = 𝛼 ⋅ 𝑒𝑖𝜔𝑡, ℎ(𝑡) = ℎ ⋅ 𝑒𝑖𝜔𝑡 of the bridge deck the 

bound vorticity is also assumed to be harmonic in time 𝛤(𝑡) = 𝛤 ⋅ 𝑒𝑖𝜔𝑡 thus the 

vertical wake is assumed to be harmonic both in time and space 𝛾(𝑡, 𝑥) =

 𝛾 ⋅ 𝑒𝑖𝜔𝑡𝑒−𝑖(𝜔 𝑈⁄ )𝑥. Introducing the non-dimensional coordinate 𝜉 = 2𝑥 𝐵⁄  in the 

wake integral and observing the spatial harmonic structure of the wake allows 

(5.8) to be expressed as: 

𝛤 +
𝛾𝐵

2
∫

𝑒−𝑖
𝐾
2
𝜉

𝜉3/4 − 𝜉
𝑑𝜉

∞

0

= −𝜋𝐵 (𝑈𝛼 +
𝐵

4
𝛼̇ + ℎ̇) (5.9) 

where 𝐾 = 𝜔𝐵 𝑈⁄  is the non-dimensional frequency. 

Solution of (5.9) is possible once a relation between 𝛤 and 𝛾 is established. Such a 

relation is provided by Hemholtz theorem which states that the sum of vorticity in 

a given domain remains constant at any time. At the trailing edge (ξ = 0) the 

Helmholtz theorem transforms to the statement that the rate of change of the 

bound circulation must be balanced by the strength / unit length of the trailing 

wake swept downwind with the mean wind speed 𝑈: 

𝑑𝛤

𝑑𝑡
+ 𝑈𝛾𝜉=0 = 0 (5.10) 
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Introducing the harmonic time dependence 𝑒𝑖𝜔𝑡 in (5.10) yields the following 

relation between 𝛤 and 𝛾: 

𝛾 = −𝑖
𝜔

𝑈
𝛤 (5.11) 

Equation (5.11) may now be put in its final form: 

𝛤 (1 − 𝑖
𝐾

2
∫

𝑒−𝑖
𝐾
2
𝜉

𝜉3/4 − 𝜉
𝑑𝜉

∞

0

) = −𝜋𝐵 (𝑈𝛼 +
𝐵

4
𝛼̇ + ℎ̇) (5.12) 

Introducing (5.12) into (5.3) yields the following expression for the lift coefficient 

𝐶𝐿
𝛤 of the lift force 𝐿1/4 in the ¼ point due to the bound vortex: 

𝐶𝐿
𝛤 = −2𝜋 ⋅ 𝑐(𝐾) (𝛼 +

𝐵

4𝑈
𝛼̇ +

ℎ̇

𝑈
) (5.13) 

where: 

𝑐(𝐾) =
1

(1 − 𝑖
𝐾
2 ∫

𝑒−𝑖
𝐾
2
𝜉

𝜉3/4 − 𝜉
𝑑𝜉

∞

0
)

 
(5.14) 

𝑐(𝐾) is the single vortex equivalent of the well-known Theodorsen circulation 

function 𝐶(𝐾) which is valid for the case where the circulation is distributed over 

the entire length of the deck chord 𝐵. The integral over the wake (5.14) may be 

expressed in terms of the exponential integral, Abramowitz and Stegun [21] and 

evaluated by standard numerical methods: 

∫
𝑒−𝑖

𝐾
2
𝜉

𝜉3/4 − 𝜉
𝑑𝜉 = −𝑒−𝑖

𝐾
2
𝜉3/4𝐸1(𝜉3/4)

∞

0

 (5.15) 

The complimentary equation for the aerodynamic moment due to the bound circu-

lation is obtained similarly to (5.13) by substitution of (5.12) into (5.5): 

𝐶𝑀
𝛤 =

𝜋

2
⋅ 𝑐(𝐾) (𝛼 +

𝐵

4𝑈
𝛼̇ +

ℎ̇

𝑈
) (5.16) 

The single vortex model for the oscillation streamlined bridge deck is evaluated 

by comparison of the "single vortex" circulation function 𝑐(𝐾) to the Theodorsen 

circulation function 𝐶(𝐾) valid for the "flat plate" airfoil with distributed bound 

vorticity, Fung [22]. Figure 5.3 compares the real and imaginary parts 𝐹(𝐾), 

𝐺(𝐾) of the Theodorsen circulation function to the real and imaginary parts 𝑓(𝐾), 

𝑔(𝐾) of 𝑐(𝐾). Reasonable agreement is demonstrated for 𝐾 < 0.5. Numerical 

evaluation of the circulation functions is detailed in Appendix B. 
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Figure 5.3 Comparison of real and imaginary parts F, G of the Theodorsen circulation function 

(heavy line) to real and imaginary parts of the "single vortex" circulation function equation (46) 

(light line, markers). 

Equations (5.13) and (5.16) model the effect of the oscillatory lift force 𝐿1/4 and 

moment due to the bound circulation. As indicated in Figure 5.2 a second lift 

force 𝐿3/4 which acts in the ¾ chord point and corresponding moment 𝑀3/4 ex-

ists. These forces are associated with the centrifugal action and the added mass 

𝑚𝑎 = 𝜋𝜌(𝐵 2⁄ )2 of the air entrained by oscillatory motion of the deck, [22]: 

𝐿3/4 = −𝜋𝜌(𝐵 2⁄ )2𝑈𝛼̇  (5.17) 

𝑀3/4 = 𝐿3/4 ⋅ (𝐵 4⁄ ) =
−𝜋

2
𝜌(𝐵 2⁄ )3𝑈𝛼̇ 

 (5.18) 

Or in non-dimensional form: 

𝐶𝐿
3/4

=
𝐿3/4

½𝜌𝑈2𝐵
= −2𝜋

𝐵

4𝑈
𝛼̇ (5.19) 

𝐶𝑀
3/4

=
𝑀3/4

½𝜌𝑈2𝐵2
=

−2

𝜋

𝐵

4𝑈
𝛼̇ (5.20) 

Finally inertia forces associated with acceleration of the added mass may be added 

𝐿𝑎 = −𝜋𝜌(𝐵 2⁄ )2ℎ̈ (5.21) 

𝑀𝑎 = 𝜋𝜌(𝐵 2⁄ )2(𝐵 4⁄ )2𝛼̈ (5.22) 

Which can be expressed in non-dimensional coefficient form as: 
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𝐶𝐿
𝑎 =

𝐿𝑎

½𝜌𝑈2𝐵
= −

𝜋

2

𝐵

𝑈2
ℎ̈ (5.23) 

𝐶𝑀
𝑎 =

𝑀3/4

½𝜌𝑈2𝐵2
= −

𝜋

64

𝐵2

𝑈2
𝛼̈ (5.24) 

From (5.21) and (5.22) it is noted that the forces due to acceleration of the added 

mass is independent of the wind speed 𝑈. For analysis purposes it can thus be 

chosen to include the added inertia with the structural inertia or subtract them 

from the aerodynamic forces. Often it is found that the added inertia is small in 

comparison to the structural inertia and can be neglected. 

Addition of the ¾ chord forces to the circulatory terms yields the form of the 

aeroelastic load coefficients for the oscillating bridge deck presented by Bleich [4] 

save that half the chord length 𝑏 = 𝐵 2⁄  was used as characteristic dimension in-

stead of 𝐵. 

𝐶𝐿𝑎𝑒 = [
𝜕𝐶𝐿

𝜕𝛼
𝐶(𝐾)(𝛼 +

ℎ̇

𝑈
) +

𝐵

4𝑈
𝛼̇ (

𝜕𝐶𝐿

𝜕𝛼
𝐶(𝐾) + 2𝜋) −

𝜋

2
(

𝐵

𝑈2
) (

ℎ̈

𝐵
)] (5.25) 

𝐶𝑀𝑎𝑒 = [
𝜕𝐶𝑀

𝜕𝛼
𝐶(𝐾)(𝛼 +

ℎ̇

𝑈
) +

𝐵

4𝑈
𝛼̇ (

𝜕𝐶𝑀

𝜕𝛼
𝐶(𝐾) −

𝜋

2
) −

𝜋

64
(
𝐵2

𝑈2
) 𝛼̈] (5.26) 

In (5.25), (5.26) the theoretical "flat plate" derivatives −2𝜋 and 𝜋 2⁄  has been 

replaced by the more general terms 𝜕𝐶𝐿 𝜕𝛼⁄  and 𝜕𝐶𝑀 𝜕𝛼⁄  for future reference. 

Equations (5.25) and (5.26) are in a mixed form format as the assumption of har-

monic motion for flutter was evoked for derivation of the circulation function. 

Introducing 𝛼(𝑡) = 𝛼 ⋅ 𝑒𝑖𝜔𝑡, ℎ(𝑡) = ℎ ⋅ 𝑒𝑖𝜔𝑡 in (5.25) and (5.26) and letting 

𝐾 = 𝜔𝐵 𝑈⁄  allows the equations to be recast in complex algebraic form. 𝐶(𝐾) (or 

𝑐(𝐾)) has been replaced by its real and imaginary parts 𝐹(𝐾) = 𝐹 and 𝐺(𝐾) = 𝐺. 

The final form of the aeroelastic lift and moment 𝐿𝑎𝑒 and 𝑀𝑎𝑒 normalized by dy-

namic head and characteristic dimension is finally obtained as: 

𝐿𝑎𝑒

½𝜌𝑈2𝐵
= [

𝜕𝐶𝐿

𝜕𝛼
(𝐹 −

𝐾

4
𝐺) 𝛼 + 𝑖 (

𝜕𝐶𝐿

𝜕𝛼
(𝐺 +

𝐾

4
𝐹) −

𝜋

2
𝐾)𝛼

+ (
𝜋

2
𝐾2 −

𝜕𝐶𝐿

𝜕𝛼
𝐾𝐺) (

ℎ

𝐵
) + 𝑖

𝜕𝐶𝐿

𝜕𝛼
𝐾𝐹 (

ℎ

𝐵
)] 

(5.27) 

𝑀𝑎𝑒

½𝜌𝑈2𝐵2
= [(

𝜕𝐶𝑀

𝜕𝛼
(𝐹 −

𝐾

4
𝐺) +

𝜋

64
𝐾2) 𝛼

+ 𝑖 (
𝜕𝐶𝑀

𝜕𝛼
(𝐺 +

𝐾

4
𝐹) −

𝜋

8
𝐾)𝛼 −

𝜕𝐶𝑀

𝜕𝛼
𝐾𝐺 (

ℎ

𝐵
)

+ 𝑖
𝜕𝐶𝑀

𝜕𝛼
𝐾𝐹 (

ℎ

𝐵
)] 

(5.28) 
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A few comments are appropriate at this point. First it is noted that the oscillatory 

aeroelastic lift and moment coefficients are both functions of the reduced frequen-

cy, are complex valued and have components proportional to the non-dimensional 

torsion and bending displacement 𝛼, (ℎ 𝐵⁄ ) as well as the torsion and bending 

velocities 𝑖𝛼, 𝑖(ℎ 𝐵⁄ ). Secondly it is noted that the aeroelastic loads tends to their 

steady values for vanishing non-dimensional frequency 𝐾 → 0 as 𝐹(𝐾) → 1 and 

𝐺(𝐾) → 0, Figure 5.3. 

5.3 Scanlans model of aeroelastic loads on a bridge deck in small amplitude  

 oscillatory motion 

Scanlan and Tomko [8] proposed the model for the aeroelastic loads on a bridge 

deck in oscillatory motion presented in section 3.3. This model borrows from 

Theodorsens potential flow model as it specifies the same dependence of the loads 

on the components of motion as (5.27), (5.28) but with the theoretical determined 

coefficients replaced by experimental data: 

𝐿𝑎𝑒

𝜌𝑈2𝐵
= [𝐾𝐻1

∗
ℎ̇

𝑈
+ 𝐾𝐻2

∗
𝐵𝛼̇

𝑈
+ 𝐾2𝐻3

∗𝛼 + 𝐾2𝐻4
∗
ℎ

𝐵
] (5.29) 

𝑀𝑎𝑒

𝜌𝑈2𝐵2
= [𝐾𝐴1

∗
ℎ̇

𝑈
+ 𝐾𝐴2

∗
𝐵𝛼̇

𝑈
+ 𝐾2𝐴3

∗𝛼 + 𝐾2𝐴4
∗
ℎ

𝐵
] (5.30) 

The original formulation [8] included 6 coefficients or aerodynamic derivatives 

𝐴1..3
∗ , 𝐻1..3

∗  which are functions of the non-dimensional wind speed 𝑈/𝑓𝐵 or re-

duced frequency 𝐾 and are to be determined from experiments. Also the aeroelas-

tic forces were normalized by twice the dynamic head 𝜌𝑈2 instead of ½𝜌𝑈2 

which is common in aerodynamics. During the 80'ties the formulation of the aero-

elastic loads was changed to include 8 aerodynamic derivatives (5.29), (5.30) in 

agreement with (5.27), (5.28). The normalizing head was also changed to ½𝜌𝑈2 

in line with common aerodynamic practice. It is noted that the factor 2 in the nor-

malizing head carries over in the numerical values of the aerodynamic derivatives. 

For practical applications of experimental data it is thus important to be aware of 

the underlying formulation. Aerodynamic derivatives measured in accordance 

with "new" formulation must be multiplied by ½ if applied in flutter calculation 

routines developed in accordance with the "early" formulation. For the present 

discussion the "early" formulation normalized by 𝜌𝑈2 is retained.  

The mixed format of (5.29), (5.30) can be changed by introducing the time com-

plex formulation 𝛼(𝑡) = 𝛼 ⋅ 𝑒𝑖𝜔𝑡, ℎ(𝑡) = ℎ ⋅ 𝑒𝑖𝜔𝑡 to yield: 

𝐿𝑎𝑒

𝜌𝑈2𝐵
= 𝐾2 [(𝐻4

∗ + 𝑖𝐻1
∗)

ℎ

𝐵
+ (𝐻3

∗ + 𝑖𝐻2
∗)𝛼] (5.31) 
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𝑀𝑎𝑒

𝜌𝑈2𝐵2
= 𝐾2 [(𝐴4

∗ + 𝑖𝐴1
∗)

ℎ

𝐵
+ (𝐴3

∗ + 𝑖𝐴2
∗)𝛼] (5.32) 

Comparison of the individual coefficients to the 𝛼, 𝑖𝛼 and ℎ 𝐵⁄ , 𝑖 ℎ 𝐵⁄  terms in 

(5.29), (5.30) and (5.31), (5.32) yields theoretical expressions for the aerodynamic 

derivatives. 

𝐻1
∗(𝐾) =

1

2𝐾2
[
𝜕𝐶𝐿

𝜕𝛼
𝐾𝐹] 

(5.33) 

𝐻2
∗(𝐾) =

1

2𝐾2
[
𝜕𝐶𝐿

𝜕𝛼
(𝐺 +

𝐾

4
𝐹) −

𝜋

4
𝐾] (5.34) 

𝐻3
∗(𝐾) =

1

2𝐾2
[
𝜕𝐶𝐿

𝜕𝛼
(𝐹 −

𝐾

4
𝐺)] (5.35) 

𝐻4
∗(𝐾) =

1

2𝐾2
[
𝜋

2
𝐾2 −

𝜕𝐶𝐿

𝜕𝛼
𝐾𝐺] 

(5.36) 

𝐴1
∗(𝐾) =

1

2𝐾2
[
𝜕𝐶𝑀

𝜕𝛼
𝐾𝐹] 

(5.37) 

𝐴2
∗(𝐾) =

1

2𝐾2
[
𝜕𝐶𝑀

𝜕𝛼
(𝐺 +

𝐾

4
𝐹) −

𝜋

8
𝐾] 

(5.38) 

𝐴3
∗(𝐾) =

1

2𝐾2
[
𝜕𝐶𝑀

𝜕𝛼
(𝐹 −

𝐾

4
𝐺) +

𝜋

64
𝐾2] 

(5.39) 

𝐴4
∗(𝐾) =

1

2𝐾2
[−

𝜕𝐶𝑀

𝜕𝛼
𝐾𝐺] 

(5.40) 

The aerodynamic derivatives for the flat plate is obtained by replacing 𝜕𝐶𝐿 𝜕𝛼⁄  by 

−2𝜋 and 𝜕𝐶𝑀 𝜕𝛼⁄  by 𝜋 2⁄  in (5.33) – (5.40). 

Other formulations of the aeroelastic forces on bridge decks are available in the 

literature [11], [23]. However, the Scanlan formulation has gained a certain popu-

larity amongst practitioners in the field of bridge aerodynamics and appears to be 

the "de facto" industry standard today. 

5.4 Assembly of the flutter equations 

The flutter equations are assembled by combining the aeroelastic forces with the 

equations of motion for a one-degree-of-freedom oscillator. One for each degree-

of-freedom to be considered. The simplest possible case is the two-degree-of-

freedom motion allowed in a spring supported section model for which the flutter 

equations can be written as:  

𝐼𝛼̈ + 2𝜁𝛼𝐼𝜔𝛼𝛼̇ + 𝐼𝜔𝛼
2𝛼 = 𝜌𝑈2𝐵2𝐾2 [(𝐴4

∗ + 𝑖𝐴1
∗)

ℎ

𝐵
+ (𝐴3

∗ + 𝑖𝐴2
∗)𝛼] (5.41) 
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𝐵𝑚
ℎ̈

𝐵
+ 2𝜁ℎ𝑚𝜔ℎ

ℎ̇

𝐵
+ 𝑚𝜔ℎ

2
ℎ

𝐵

= 𝜌𝑈2𝐵𝐾2 [(𝐻4
∗ + 𝑖𝐻1

∗)
ℎ

𝐵
+ (𝐻3

∗ + 𝑖𝐻2
∗)𝛼] 

(5.42) 

Equations (5.41) and (5.42) can be cast into complex algebraic form assuming 

harmonic motion at a common frequency 𝜔 on the left hand side of the equations: 

(𝜔𝛼
2 + 𝑖2𝜁𝛼𝜔𝛼𝜔 − 𝜔2)𝛼 =

𝜌𝐵4

𝐼
𝜔2 [(𝐴4

∗ + 𝑖𝐴1
∗)

ℎ

𝐵
+ (𝐴3

∗ + 𝑖𝐴2
∗)𝛼] (5.43) 

(𝜔ℎ
2 + 𝑖2𝜁ℎ𝜔ℎ𝜔 − 𝜔2)

ℎ

𝐵
=

𝜌𝐵2

𝑚
𝜔2 [(𝐻4

∗ + 𝑖𝐻1
∗)

ℎ

𝐵
+ (𝐻3

∗ + 𝑖𝐻2
∗)𝛼] (5.44) 

The 8 flutter coefficients or aerodynamic derivatives 𝐴1
∗ . . 𝐴4

∗ , 𝐻1
∗. . 𝐻4

∗ appearing 

on the right hand side of equations (5.43), (5.44) are to be determined from wind 

tunnel tests and are functions of the wind speed 𝑈 and the frequency 𝜔 of motion. 

It is common practice to present the flutter coefficients as functions of the non-

dimensional wind speed 𝑈/𝑓𝐵 where 𝑓 =  𝜔/2𝜋 and 𝐵 is the deck width. An 

example of the aerodynamic derivatives measured according to Scanlans "early" 

definition (normalization by 𝜌𝑈2) and obtained for the deck of the Izmit suspen-

sion bridge Figure 5.4 is shown in Figure 5.5. 

 

Figure 5.4 Trapezoidal box girder bridge deck cross section of the Izmit Suspension Bridge 



                                                                               Allan Larsen. Bridge Deck Flutter Analysis 

 

 

 85 

 

Figure 5.5 Aerodynamic derivatives or flutter coefficients for the Izmit suspension bridge deck 

section obtained from forced motion wind tunnel tests. 

From Figure 5.5 it is noted that the aerodynamic are all zero at zero wind speed at 

which the torsion and vertical degrees-of-freedom are uncoupled. At higher wind 

speeds the flutter coefficients introduces coupling between the torsion and vertical 

degree of freedom which are proportional to displacement and velocity respective-

ly, but they also changes the magnitude and phase angle of the aerodynamic lift 

force and moment relative to the instant torsion angle. The reason being that the 

aerodynamic force and moment acting on the moving deck is composed of two 

parts, a bound stationary vortex 𝛤 situated approximately at the upwind ¼ deck 

width point and an oscillating sheet of vorticity shed in the wake as outlined in 

section 5.2. In contrast the aerodynamic forces on a stationary deck at inflow an-

gle are related to the bound vortex only. 

To gain insight into how the flutter coefficients influences the otherwise uncou-

pled structural two-degree-of-freedom system it is useful to observe the frequency 

response function of (5.43), (5.44) i.e. the ratio of the response to a dynamic force 

relative to a static force for varying wind speeds and different ratios of the natural 

frequency of torsion 𝜔𝛼 and vertical 𝜔ℎ motion, Figure 5.6. 
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Figure 5.6 Frequency response plots for the Izmit suspension bridge deck section model. Frequen-

cy ratio ωθ ωz = 2.93⁄  (as designed). 

For 𝑈 = 0 a distinct peak for each of the natural frequencies are observed. For 

increasing wind speeds the peaks becomes lower signifying increased damping of 

the motion with the vertical peak being at the same frequency as for zero wind 

speed but with the torsion peak moving progressively towards lower frequencies. 

At the critical wind speed (𝑈𝑐 = 62 m/s in the 𝜔𝜃 𝜔𝑧 = 2.93⁄  case) the torsion 

peak becomes un-damped with the response tending to infinity which marks the 

flutter point. For 𝜔𝜃 𝜔𝑧 = 1.67⁄ , the behavior repeats but the flutter point is now 

at lower critical wind speed 𝑈𝑐 = 55 m/s emphasizing the importance of the fre-

quency ratio. Inertia and frequency data relevant to the Izmit suspension bridge 

are presented in section 5.5. 

 
Figure 5.7 Frequency response plots for the Izmit suspension bridge deck section model. Frequen-

cy ratio ωθ ωz = 1.67⁄ . 
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The flutter equations (5.43), (5.44) can be solved for critical wind speed and flut-

ter frequency by different methods. Two such methods are outlined in the follow-

ing sections. 

5.5 Solution of the flutter equations, the Theodordsen method 

A first step for solving the flutter equations is to arrange the flutter equations 

(5.43), (5.44) in matrix form: 

[
(
𝜔𝛼

𝜔
)
2
+ 𝑖2𝜁𝛼 (

𝜔𝛼

𝜔
) − 1 − 𝐴𝛼𝛼 −𝐴𝛼ℎ

−𝐻𝛼ℎ (
𝜔ℎ

𝜔
)
2
+ 𝑖2𝜁ℎ (

𝜔ℎ

𝜔
) − 1 − 𝐻ℎℎ

] {
𝛼
ℎ

𝐵
} = 0  (5.45) 

The coefficient matrix in (5.45) is divided by the common but unknown 

flutter frequency squared 𝜔2 to yield the flutter determinant: 
 

|
(
𝜔𝛼

𝜔
)
2

+ 𝑖2𝜁𝛼 (
𝜔𝛼

𝜔
) − 1 − 𝐴𝛼𝛼 −𝐴𝛼ℎ

−𝐻𝛼ℎ (
𝜔ℎ

𝜔
)
2

+ 𝑖2𝜁ℎ (
𝜔ℎ

𝜔
) − 1 − 𝐻ℎℎ

| (5.46) 

Where the 𝐴𝛼ℎ, 𝐻𝛼ℎ terms are shorthand notation for the terms including the aer-

odynamic derivatives which are functions of the non-dimensional wind speed: 

𝐴𝛼𝛼 =
𝜌𝐵4

𝐼
(𝐴3

∗ + 𝑖𝐴2
∗) 

𝐴𝛼ℎ =
𝜌𝐵4

𝐼
(𝐴4

∗ + 𝑖𝐴1
∗) 

𝐻𝛼ℎ =
𝜌𝐵2

𝑚
(𝐻3

∗ + 𝑖𝐻2
∗) 

𝐻ℎℎ =
𝜌𝐵2

𝑚
(𝐻4

∗ + 𝑖𝐻1
∗) 

(5.47) 

The next step is to multiply (5.45) by the ratio of the flutter frequency the bending 

frequency squared (𝜔 𝜔ℎ⁄ )2 = 𝑋2 and after introducing the eigenfrequency ratio 

(𝜔𝛼 𝜔ℎ⁄ )2 = 𝛾2 (5.46) is recast into the following form: 

|
𝛾2 + 𝑖2𝜁𝛼𝑋𝛾 − 𝑋2 − 𝑋2𝐴𝛼𝛼 −𝑋2𝐴𝛼ℎ

−𝑋2𝐻𝛼ℎ 1 + 𝑖2𝜁ℎ𝑋 − 𝑋2 − 𝑋2𝐻ℎℎ

| (5.48) 

Solution of (5.45) is obtained by setting the flutter determinant (5.46) equal to 

zero yielding a complex 4th order algebraic equation in 𝑋: 

(𝛾2 + 𝑖2𝜁𝛼𝑋𝛾 − 𝑋2 − 𝑋2𝐴𝛼𝛼)(1 + 𝑖2𝜁ℎ𝑋 − 𝑋2 − 𝑋2𝐻ℎℎ)
− 𝑋2𝐴𝛼ℎ𝐻𝛼ℎ = 0 (5.49) 

(5.49) can be expanded to yield a 4th order equation for the real part and a 3th 

order equation for the imaginary part, see Appendix C. Determination of the flut-

ter wind speed and the flutter frequency proceeds graphically by plotting the real 

and imaginary root curves of (5.49) as function of the non-dimensional wind 

speed. The flutter point is obtained as the coordinates (𝑈 𝑓𝐵⁄
𝑐
, 𝑋𝑐) of intersec-

tion point of the root curves. Having established the abscissa 𝑈 𝑓𝐵⁄
𝑐
 and the ordi-
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nate 𝑋𝑐 of the intersection point, the flutter wind speed and the flutter frequency 

are obtained as: 

𝑈𝑐 = (
𝑈

𝑓𝐵
)
𝑐

𝑋𝑐𝑓ℎ𝐵 (5.50) 

𝑓𝑐 = 𝑋𝑐𝑓ℎ (5.51) 

where 𝑓ℎ = 𝜔ℎ 2𝜋⁄ . 

The above procedure is illustrated in Figure 5.8 applying the measured aerody-

namic derivatives of Izmit deck section shown in Figure 5.4 and section mass 

properties and eigenfrequencies given in Table 5.1. Solution of the real and imag-

inary root curves is carried out by means of a commercially available numerical 

routine included in the PC based MathCad mathematical calculus environment.  

𝑚 [kg/m] 𝐼 [kgm
2
/m 𝑓ℎ [Hz] 𝑓𝛼  [Hz] 𝐵 [m] 𝜕𝐶𝑀 𝜕𝛼0⁄  𝜕𝐶𝐿 𝜕𝛼0⁄  

21.09·10
3
  2.506·10

6
 0.091 0.268 35.8 1.17 4.6 

Table 5.1 Structral and aerodynamic properties of the Izmit Suspension Bridge. 

 

Figure 5.8 Determination of flutter wind speed and frequency from intersection of real and imagi-

nary root curves according to the Theodorsens method. Izmit structural and aerodynamic proper-

ties. 

Application of (5.50), (5.51) to the coordinates of the intersection point yields a 

critical wind speed 𝑈𝑐 = 61.9 m/s and a flutter frequency 𝑓 = 0.182 Hz in good 

agreement with Figure 5.6. 
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5.6 Solution of the flutter equations, the AMC method 

The Theodorsen method becomes cumbersome in practical use for flutter calcula-

tions that includes more than two modes as the order of the algebraic root curves 

increases linearly with the number of modes included in the analysis. The AMC 

method (Air Material Command) [21] constitutes a procedure which is better suit-

ed for analyses involving multiple modes. A formal drawback is that it requires 

that the structural damping to be identical for all modes considered. 

The basic assumption taken is taken is that the structural damping forces in the 

bridge is proportional to the displacement, but phase shifted 90 degrees. The flut-

ter equations thus takes on the following form: 

((1 + 𝑖𝑔)𝜔𝛼
2 − 𝜔2)𝛼 =

𝜌𝐵4

𝐼
𝜔2 [(𝐴4

∗ + 𝑖𝐴1
∗)

ℎ

𝐵
+ (𝐴3

∗ + 𝑖𝐴2
∗)𝛼] (5.52) 

((1 + 𝑖𝑔)𝜔ℎ
2 − 𝜔2)

ℎ

𝐵
=

𝜌𝐵2

𝑚
𝜔2 [(𝐻4

∗ + 𝑖𝐻1
∗)

ℎ

𝐵
+ (𝐻3

∗ + 𝑖𝐻2
∗)𝛼] (5.53) 

Where 𝑔 is the apparent damping coefficient, which for low damping levels is 

equal to twice the structural viscous damping relative-to-critical 𝑔 = 2𝜁. Proceed-

ing as before by arranging the flutter equations in matrix form, the flutter determi-

nant is obtained as: 

|
(
𝜔𝛼

𝜔
)
2

(1 + 𝑖𝑔) − 1 − 𝐴𝛼𝛼 −𝐴𝛼ℎ

−𝐻𝛼ℎ (
𝜔ℎ

𝜔
)
2

(1 + 𝑖𝑔) − 1 − 𝐻ℎℎ

| (5.54) 

Multiplying the lower row by the frequency ratio squared (𝜔𝛼 𝜔ℎ⁄ )2 = 𝛾2 and 

changing sign for all terms in the determinant allows (5.54) to be rewritten as fol-

lows: 

|
1 + 𝐴𝛼𝛼 − (

𝜔𝛼

𝜔
)
2

(1 + 𝑖𝑔) 𝐴𝛼ℎ

𝛾2𝐻𝛼ℎ 𝛾2(1 + 𝐻ℎℎ) − (
𝜔𝛼

𝜔
)
2

(1 + 𝑖𝑔)

| (5.55) 

Setting the flutter determinant equal to zero and substituting 𝜆 = (𝜔𝛼 𝜔⁄ )2(1 +
𝑖𝑔) (5.55) is recognized as a complex eigenvalue problem (5.56) which may be 

solved by standard numerical methods. 

|
1 + 𝐴𝛼𝛼 − 𝜆1 𝐴𝛼ℎ

𝛾2𝐻𝛼ℎ 𝛾2(1 + 𝐻ℎℎ) − 𝜆2
| = 0 (5.56) 

Once the complex eigenvalues 𝜆1, 𝜆2 has been determined as functions of the 

non-dimensional wind speed, the apparent aerodynamic damping 𝑔, the flutter 

frequency ratio 𝑓 𝑓𝛼⁄  and the corresponding wind speed 𝑈 are obtained from the 

identity 𝜆 = (𝜔𝛼 𝜔⁄ )2(1 + 𝑖𝑔) as follows: 
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𝑔 =
𝐼𝑚(𝜆)

𝑅𝑒(𝜆)
 (5.57) 

𝑓

𝑓𝛼
=

1

√𝑅𝑒(𝜆)
 (5.58) 

𝑈 = (
𝑈

𝑓𝐵
)

𝐵𝑓𝛼

√𝑅𝑒(𝜆)
 

(5.59) 

Where 𝑅𝑒(𝜆), 𝐼𝑚(𝜆) are the real and imaginary parts of the eigenvalues deter-

mined as function of the non-dimensional wind speed. The analyses in the follow-

ing examples are carried out by means of a commercially available numerical rou-

tine included in the PC based MathCad mathematical calculus environment. 

Determination of the critical wind speed follows from balancing the apparent aer-

odynamic damping 𝑔 with the structural damping 2𝜁𝑠 of the bridge. This is con-

veniently done in graphical form as shown in Figure 5.9 (top). 
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Figure 5.9 Determination of flutter wind speed from balancing of the apparent aerodynamic damp-

ing 𝑔 to the structural damping2𝜁𝑠 (top) and determination of frequency ratio at flutter point ac-

cording to the AMC method. Izmit structural and aerodynamic properties. 

It is noted that one of the eigenvalue curves 𝜆1 defines an aerodynamic damping 

that starts out being negative at low wind speeds but tends towards positive values 

at higher wind speeds and balances the structural damping at 62 m/s. This defines 

the flutter wind speed of the bridge. The other eigenvalue curve 𝜆2 remains nega-

tive at all wind speeds and is not associated with aerodynamic instability. The 

flutter frequency is determined from Figure 5.9 (bottom) as the ordinate of the 

point of intersection between frequency ratio curve (5.58) and a vertical line at the 
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critical wind speed. At 𝑈 = 62 m/s the frequency ratio is obtained as 𝑓 𝑓𝛼⁄ = 0.72 

or 𝑓 = 0.19 Hz in reasonable agreement with the result of the Theodordsen meth-

od. Lastly it is noted that structural damping has little influence on the critical 

wind speed as 𝑈𝑐 = 61 m/s is read off Figure 5.9 (top) for 𝑔 = 0. 

5.7 Measured or "flat plate" aerodynamic derivatives? 

It is often stated that the critical wind speed of semi-streamlined bridge girders 

like the Izmit deck section is well predicted by the theoretical aerodynamic de-

rivatives (5.33) – (5.40) either by applying the "flat plate" lift and moment slopes 

𝜕𝐶𝐿 𝜕𝛼⁄  = −2𝜋 and 𝜕𝐶𝑀 𝜕𝛼⁄  = 𝜋 2⁄  or by introducing lift and moment slopes 

determined from static load tests of section models. These options are investigated 

in Figure 5.10 applying the AMC method. 

The critical wind speed determined from the measured aerodynamic derivatives is 

approximately 62 m/s as mentioned above. Applying the theoretical aerodynamic 

derivatives with "flat plate" lift and moment slope yields a critical wind speed of 

67 m/s slightly higher than experimental aerodynamic derivatives. Application of 

the measured static lift slopes 𝜕𝐶𝐿 𝜕𝛼⁄  = −4.6 and 𝜕𝐶𝑀 𝜕𝛼⁄ = 1.17, Table 5.1, 

yields a critical wind speed of 81 m/s approximately 30 % higher than obtained 

from experiment. The example thus supports the notion that "flat plate" theory is a 

reasonable approximation to the critical wind speed of semi-streamlined bridge 

girder sections likely to err on the non-conservative side.  

 

Figure 5.10 Critical wind speeds determined for the Izmit bridge section model applying measured 

and theoretical aerodynamic derivatives. 
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5.8 Selbergs formula, eigenfrequency ratio and static divergence 

The success of the "flat plate" theory to predict the critical wind speed of semi-

streamlined bridge sections prompted Selberg [6] to develop a simple formula for 

estimation of the critical wind of the "flat plate" bridge deck. The original formu-

lation included the eigenfrequencies expressed in rad/s. Current formulations usu-

ally involves the eigenfrequencies in Hz [24]. 

𝑈𝑐 = 3.71𝑓𝛼𝐵√
𝑅𝑚

𝜌𝐵3 (1 − (
𝑓ℎ
𝑓𝛼

)
2

) (5.60) 

Where 𝑅 = √𝐼 𝑚⁄  is the radius of gyration of the bridge deck including the inertia 

of the main cables and the empirical constant 3.71 include the effect of the aero-

dynamic loads. Selberg did not detail the development of (5.60) in [6] but a clue 

to how the formula was conceived can be obtained from the following argument. 

The equation of motion for the torsional mode (5.43) can be reformulated in a 

simplified form by neglecting structural damping and aerodynamic the derivatives 

associated with torsion damping and the vertical mode 𝐴2
∗ , 𝐴1

∗ , 𝐴4
∗  and substituting 

the leading term of the "flat plate" value (5.39) for 𝐴3
∗ : 

(𝜔𝛼
2 − 𝜔2)𝛼 =

𝜌𝐵4

𝐼
𝜔2

1

2𝐾2
[
𝜋

2
𝐹(𝐾)] 𝛼 (5.61) 

Inserting 𝐾 = 𝜔𝐵 𝑈⁄ , observing that 𝐼 = 𝑅2𝑚 =  𝑅𝑚√𝐼 𝑚⁄  and making the bold 

assumption that 𝜔2 = ½(𝜔𝛼
2 + 𝜔ℎ

2) (which is not unreasonable in light of Figure 

5.7) allows (5.61) to be rearranged as: 

𝑈𝑐 =

[
 
 
 
 
√

8𝜋

𝐹(𝐾)
√

𝐼

𝑚𝐵2

]
 
 
 
 

𝑓𝛼𝐵√
𝑅𝑚

𝜌𝐵3
(1 − (

𝑓ℎ
𝑓𝛼

)
2

) (5.62) 

Selberg made his estimate of the empirical aerodynamics constant of 3.71 based 

on a long series of "flat plate" calculations for varying structural parameters repre-

sentative of suspension bridges. The first term in the square brackets in (5.62) is 

the equivalent of Selbergs empirical constant. Taking the Izmit bridge section as a 

single example the non-dimensional frequency at flutter is obtained from Figure 

5.8 as 𝐾𝑐 = 2𝜋 8.83⁄ = 0.71. The first term in (5.62) assumes a value of 3.43 for 

𝐹(𝐾𝑐) = 0.65, Figure 5.3, giving some credibility to the above argument. 
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Figure 5.11 Critical wind speed predicted by the Selberg formula and from "flat plate" and exper-

imental aerodynamic derivatives obtained for the Izmit deck section applying Izmit bridge struc-

tural properties. 

Figure 5.11 presents a plot of the critical wind speed obtained by Selbergs formula 

(5.60) and by a two-degree-of-freedom flutter analysis. It is noted that Selbergs 

formula predicts that the critical wind speed approaches 0 when the eigenfrequen-

cy ratio 𝑓ℎ 𝑓𝛼⁄  approaches unity. Critical wind speeds obtained from two-degree-

of-freedom flutter calculations applying "flat plate" and experimental aerodynam-

ic derivatives demonstrate a good agreement with the Selberg formula for fre-

quency ratios less than 0.8, with the "flat plate" values yielding a slightly better 

agreement as to be expected. The critical wind speed according to Selbergs for-

mula drops rapidly off at 𝑓ℎ 𝑓𝛼⁄  ratios higher than 0.8 whereas the two-degree-of-

freedom calculations display and increasing critical wind speed as 𝑓ℎ 𝑓𝛼⁄  ap-

proaches unity. 

The fact that the critical wind speed grows rapidly as the frequency ratio ap-

proaches unity has sparked off proposals to design "flutter free" suspension bridg-

es for which the frequency ratio is kept very close to unity. While the idea cannot 

be dismissed from theoretical considerations another type of aerodynamic insta-

bility, static divergence, must also be accounted for. Static divergence marks a 

condition by which the twisting action of static aerodynamic moment exceeds the 

resisting capacity of the structural stiffness and thus makes the girder yield once 

the threshold wind speed is exceeded. The threshold wind speed for static diver-

gence 𝑈𝑑 can be obtained from (5.63) assuming that 𝜔 = 0 and that 𝐴3
∗  is re-

placed by its steady state value 𝐴3
∗ = 𝜕𝐶𝑀 𝜕𝛼⁄ : 
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𝑈𝑑 = 𝜔𝛼𝐵√
𝐼

𝜌𝐵4

2

𝜕𝐶𝑀 𝜕𝛼⁄
 (5.63) 

The divergence wind speeds obtained for the Izmit deck section assuming either 

"flat plate" (𝜕𝐶𝑀 𝜕𝛼⁄  = 𝜋 2⁄ ) and measured moment slopes (𝜕𝐶𝑀 𝜕𝛼⁄  = 1.17) are 

marked by horizontal lines in Figure 5.11. It is noted that static divergence be-

comes the governing factor for aerodynamic stability as the frequency ratio ap-

proaches unity. 

5.9 The influence of mode shape 

The structural and aeroelastic loads on a cable supported bridge is dependent on 

the amplitude of the motion of the bridge structure as is apparent from (5.43), 

(5.44). For real bridge structures the amplitudes will vary as a function of the span 

wise position, as given by the mode shapes of the bridge participating in the flut-

ter motion. Flutter is driven by the torsion mode having the lowest frequency and 

will couple to the vertical modes of lower frequency but of similar symmetric or 

asymmetric form. To illustrate this concept the basic torsion and bending mode 

shapes of the Izmit suspension bridge as determined from Finite Element analysis 

are shown in Figure 5.12, Figure 5.13. 

Side view / top view  

Eigenmode / eigenfrequency 

 

 
1st. vertical (symmetric) / 0.091 Hz 

 

 
3rd. vertical (symmetric) 0.134 Hz 

 

 
1st. torsion (symmetric) / 0.268 Hz 

Figure 5.12 Symmetric eigenmodes of the Izmit suspension bridge determined by Finite Element 

analysis. 
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Side view / top view  

Eigenmode / eigenfrequency 

 

 

 
2st. vertical (asymmetric) / 0.106 Hz 

 

 
4th. vertical (asymmetric) / 0.180 Hz 

 

 
2nd. torsion (asymmetric) / 0.271 Hz 

Figure 5.13 Asymmetric eigenmodes of the Izmit suspension bridge determined by Finite Element 

analysis. 

The principle involved in combining the structural modes to the inertial and aeroe-

lastic forces is well known form standard textbooks on structural dynamics and 

wind engineering such as Scanlan and Simiu [27] and will not be discussed in 

further detail. It can be demonstrated that the effect of mode shape is included in 

the 𝐴𝛼𝛼, 𝐴𝛼ℎ, 𝐻𝛼ℎ, 𝐻ℎℎ terms as follows: 

𝐴𝛼𝛼 =
𝜌𝐵4

𝐼∗
𝐶𝛼𝛼(𝐴3

∗ + 𝑖𝐴2
∗) 

𝐴𝛼ℎ =
𝜌𝐵4

𝐼∗
𝐶𝛼ℎ(𝐴4

∗ + 𝑖𝐴1
∗) 

𝐻𝛼ℎ =
𝜌𝐵2

𝑚∗
𝐶𝛼ℎ(𝐻3

∗ + 𝑖𝐻2
∗) 

𝐻ℎℎ =
𝜌𝐵2

𝑚∗
𝐶ℎℎ(𝐻4

∗ + 𝑖𝐻1
∗) 

(5.64) 

Where the generalized masses / unit span length and mode shape coefficients are 

evaluated as integrals of the mode shapes 𝛼(𝑠), ℎ(𝑠) over span length 𝐿. 

𝐼∗ =
1

𝐿
∫ 𝐼(𝑠)𝛼(𝑠)2𝑑𝑠

𝐿

0

 

𝑚∗ =
1

𝐿
∫ 𝑚(𝑠)ℎ(𝑠)2𝑑𝑠

𝐿

0

 

𝐶𝛼𝛼 =
1

𝐿
∫ 𝛼(𝑠)2𝑑𝑠

𝐿

0

 

𝐶𝛼ℎ =
1

𝐿
∫ 𝛼(𝑠)ℎ(𝑠)𝑑𝑠

𝐿

0

 

𝐶𝛼𝛼 =
1

𝐿
∫ 𝛼(𝑠)2𝑑𝑠

𝐿

0

 

𝐶ℎ𝛼 = 𝐶𝛼ℎ 
(5.65) 

From (5.64) it is noted that for purely sinusoidal mode shapes 𝛼(𝑠) = sin(𝜋𝑠 𝐿⁄ ), 

ℎ(𝑠) = sin(𝜋𝑠 𝐿⁄ ) and for constant mass properties along the span, the aerody-

namic coefficients (5.64) resumes their section model properties. 
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Figure 5.14 Basic symmetric torsion and vertical bending mode shapes for the Izmit suspension 

bridge. 

The modal masses / unit length and mode shape coefficients evaluated according 

to (5.65) for the Izmit bridge are listed in Table 5.2. The corresponding critical 

wind speed for the bridge mode shapes and the section having unit mode shape 

are shown in Figure 5.15. It is noted that critical wind speed of the bridge is 66 

m/s i.e. slightly above 62 m/s found for the unit mode shape case. 

𝑚∗ [kg/m] 𝐼∗ [kgm
2
/m 𝐶𝛼𝛼  𝐶ℎℎ 𝐶𝛼ℎ 

6.09·10
3
  0.619·10

6
 0.247 0.289 0.237 

Table 5.2 Modal masses and mode shape coefficients obtained for the torsion and bending mode 

shapes displayed in Figure 5.14. 

 

Figure 5.15 Determination of critical wind speed for the Izmit bridge section and bridge based on 

the basic symmetric modes show in Figure 5.14.  
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6. Three-degree-of-freedom multimode flutter analysis 

During the 1980’ies Scanlan and co-workers expanded the two-degree-of-freedom 

theory to include the horizontal (along wind) degree-of-freedom expressed in 

terms of the 𝑃∗ derivatives, Jones et al. [26]. While the inclusion of the third de-

gree of freedom was meant to make flutter predictions more accurate, it compli-

cates wind tunnel testing considerably by increasing the number of required de-

rivatives from 8 to 18. Despite the theoretical advantage of including the horizon-

tal aerodynamic effects in flutter predictions for bridges the adequacy has to the 

authors knowledge only been published for a single practical design application. 

Miyata [11] reports that in case of the Akashi-Kaikyo Bridge inclusion of the hor-

izontal 𝑃∗ derivatives was required in order to establish agreement between the 

critical wind speed obtained from flutter analyses and from full bridge model 

tests. Probably more important, the effect of the horizontal aerodynamic deriva-

tives was to secure that flutter instability occurred in agreement with the 1/100 

scale full aeroelastic model. Flutter was not predicted from the analysis when the 

horizontal aerodynamic derivatives were omitted from the analysis. 

The author´s company is carrying out aerodynamic analyses of long span cable-

stay and suspension bridges on a regular basis and the apparent importance of the 

horizontal aerodynamic derivatives has been an ongoing concern. The effect of 

the horizontal aerodynamic derivatives has been investigated for three cases in-

volving a cable-stayed bridge of 1088 m main span and two suspension bridges of 

1550 m and 3300 m main span, the latter being a tri-girder deck structure with 

large wind screens generating considerable along-wind drag loading. The flutter 

analyses of the three bridges mentioned above is discussed in the following with 

the objective of clarifying the relative importance of the horizontal aerodynamic 

derivatives. 

6.1 Three-degree-of-freedom aeroelastic forces 

The key assumption in three-degree-of-fredom flutter analyses is that the aeroelas-

tic drag force 𝐷𝑎𝑒 may be expressed in a similar format as the aeroelastic lift 𝐿𝑎𝑒 

and moment 𝑀𝑎𝑒 (5.29), (5.30). The complete set of equations for the aeroelastic 

forces on the deck in small amplitude oscillatory motion then becomes: 

𝐿𝑎𝑒

𝜌𝑈2𝐵
= 𝐾2 [(𝐻4

∗ + 𝑖𝐻1
∗)

ℎ

𝐵
+ (𝐻3

∗ + 𝑖𝐻2
∗)𝛼 + (𝐻6

∗ + 𝑖𝐻5
∗)

𝑝

𝐵
] (6.1) 

𝐷𝑎𝑒

𝜌𝑈2𝐵
= 𝐾2 [(𝑃6

∗ + 𝑖𝑃5
∗)

ℎ

𝐵
+ (𝑃3

∗ + 𝑖𝑃2
∗)𝛼 + (𝑃4

∗ + 𝑖𝑃1
∗)

𝑝

𝐵
] (6.2) 

𝑀𝑎𝑒

𝜌𝑈2𝐵2
= 𝐾2 [(𝐴4

∗ + 𝑖𝐴1
∗)

ℎ

𝐵
+ (𝐴3

∗ + 𝑖𝐴2
∗)𝛼 + (𝐴6

∗ + 𝑖𝐴5
∗)

𝑝

𝐵
] (6.3) 
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Where 𝛼, ℎ and 𝑝 is the torsion, vertical and horizontal displacement respectively. 

The decrease of structural stiffness due to the wind loading is the primary mecha-

nism for flutter as discussed in section 5.8. However, the cross coupling between 

the vertical and twisting degrees of freedom, i.e. the aerodynamic moment caused 

by vertical movement or aerodynamic vertical lift caused by twisting motion, is 

necessary to secure prediction of the correct critical wind speed as discussed in 

the previous sections. Hence the coupling between the basic twisting and vertical 

modes and defines the flutter wind speed of a given bridge to a first approxima-

tion. The cross coupling between the horizontal and the vertical and twisting de-

grees of freedom postulated in (6.1) – (6.3) may be speculated to affect the flutter 

dynamics in two ways: 

1) Twisting motion of a vertically or horizontally curved bridge girder (i.e. 

due to mean wind loading) will have a horizontal component. The struc-

turally coupled horizontal motion will create drag forces which in turn will 

influence the flutter dynamics. 

2) Aerodynamic coupling between vertical and twisting motions will cause 

horizontal modes to be excited which in turn will influence the flutter dy-

namics. 

Multimode flutter analysis based on structural modal analysis has been a reoccur-

ring topic at wind engineering conferences for the past three decades. A good 

state-of-the-art review is presented in [26]. A more recent paper [24] discusses 

multimode flutter analysis applied to a long single span suspension bridge built 

recently in Norway. One of the conclusions of this work is that the flutter wind 

speed is reasonably well predicted if the flutter analysis is based on three structur-

al modes only being the lowest torsion mode which happened to be the first sym-

metric torsion and the lowest two symmetrical vertical bending modes. Inclusion 

of a third bending mode only changes the flutter wind speed by only 0.3%. Based 

on this result and for the sake of simplicity, the following discussion will involve 

four modes: The first symmetric or asymmetric torsion mode depending on which 

mode has the lowest eigenfrequency, the corresponding two lowest vertical modes 

(symmetric or antisymmetric to match the torsion mode) and the lowest horizontal 

mode to match the torsion or alternatively horizontal component of the lowest 

torsion mode. 

The flutter determinant for the 4 mode case is assembled similar to (5.55) adopt-

ing the structural damping formulation applied in the AMC method: 
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The calculation of modal masses and mode shape coefficients is straight forward 

following the model set out by (5.65) and will not be detailed further. 

6.2 Measurement of flutter derivatives 

Flutter derivatives are traditionally measured in a wind tunnel using a spring 

mounted section model of the bridge deck under investigation. This free oscilla-

tion technique originates from the Scanlan and Tomko 1971 landmark paper on 

bridge deck flutter [8]. In the free oscillation method decay traces of the deck sec-

tion model are measured following either an impulsive displacement or random 

excitation by turbulence. The aerodynamic derivatives are then inferred from ei-

ther the damping or the frequency shifts measured relative to a situation with no 

air flow in the wind tunnel. While the free oscillation technique is experimentally 

simple it becomes increasingly inaccurate as the test conditions approaches the 

flutter point mainly because only a few oscillation cycles are available for making 

the required analysis. This point becomes particularly critical for extraction of the 

horizontal derivatives as responses in this degree of freedom are observed to be 

small compared to the vertical and torsional degrees of freedom. The inherent 

accuracy of the free oscillation technique is often sought compensated for by re-

peating the individual sub-tests a large number of times. 

  

Figure 6.1 Schematic view of the three-degree-of-freedom forced oscillation apparatus (left). Pho-

to of the H9.1 deck section mounted in the forced oscillation apparatus in the Force Technology 

wind tunnel (right). 

h dof 

α dof 
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A much more accurate experimental method is the forced oscillation technique by 

which the aerodynamic derivatives are obtained directly as transfer functions be-

tween imposed oscillatory motions and resulting measured aerodynamic forces. 

The drawback is that the experimental apparatus is much more complicated than 

what is called for when using the free oscillation technique. The wind tunnel set-

up must be capable of moving the deck section model in accurate horizontal, ver-

tical and twisting motions while the resulting aerodynamic forces are measured 

simultaneously. FORCE Technology, Copenhagen owns and operates a 2.2 m x 

1.7 m wind tunnel with a forced oscillation apparatus, Figure 6.1, Larsen et. al. 

[28]. This set-up was applied for obtaining the three sets of aerodynamic deriva-

tives shown in Appendix D and applied in the analyses discussed in the following. 

It is noted that the important aerodynamic derivatives 𝐻1
∗, 𝐻3

∗, 𝐴2
∗ , 𝐴3

∗ , are almost 

identical for the two mono box deck sections but markedly different for the tri-

box deck of the Messina Bridge. 

For the discussion in the previous sections, the Izmit bridge aerodynamic deriva-

tives were expressed as continuous functions of the non-dimensional wind speed 

by means of curve fitted polynomials. When applied in the flutter analysis this 

process allows the apparent damping to be estimated at close spaced points as 

function of wind speed. For the analysis in the following sections, the aerodynam-

ic derivatives are introduced at discrete points in the analysis corresponding to the 

measurement points in the wind tunnel tests. The critical wind speed is then de-

termined by linear interpolation between the two points of the apparent damping 

level closest to and at either side of the anticipated structural damping level. 

6.3 The SuTong cable-stayed bridge 

The cable-stayed Finite Element model  represents the 1088 m main span SuTong 

Bridge crossing the Yangtze River in China. The bridge carries a 6 lane highway 

on a 41.0 m wide and 4.0 m deep steel box girder of trapezoidal cross section. The 

bridge girder is supported by edge anchored stay cables arranged in 8 fans, 4 radi-

ating from each pylon. 

The three degree of freedom flutter derivatives were never measured for the de-

sign work of the SuTong Bridge, hence the present analysis uses aerodynamic 

derivatives for a somewhat similar bridge deck cross section designated H9.1, 

Figure 6.3. The flutter derivatives were measured for the H9.1 section as part of 

the design and verification of the wind tunnel set-up discussed in the previous 

section. With an over-all width of 31.0 m and a depth of 4.4 m the H9.1 section is 

slightly more bluff than the SuTong deck section with an over-all deck width of 

41.0 m and a depth of 4.0 m. However, with the steady state lift, drag and moment 

slopes being almost identical for the two deck sections it is expected that the flut-

ter derivatives of the H9.1 section will be fairly representative of the SuTong 

Bridge. 
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Figure 6.2 Isometric view of the FEM model of the SuTong Bridge displaying the first torsion 

mode (symmetric). 

 

 

Figure 6.3 Comparison of the SuTong deck section (top) to the H9.1 deck section (bottom). 

From the isometric view of the FE model representation of the lowest torsion 

mode of the SuTong Bridge, Figure 6.2, it is noted, that the lowest torsion mode is 

symmetric about mid-span but it may also be recognized that the torsion mode has 

a pronounced horizontal component brought about by structural coupling. This 

fact is highlighted in Figure 6.4 which shows the modes (ℎ1, ℎ2, 𝛼16, 𝑝16) corre-

sponding to the deflection of the centre line of the bridge deck considered in the 

present analysis. Dynamic properties such as inertia and eigenfrequencies of rele-

vance to the SuTong Bridge are given in Table 6.1. 
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Figure 6.4 Vertical ℎ1, ℎ2, horizontal 𝑝16 and torsion mode shapes 𝛼16 considered for the 

SuTong Bridge flutter analysis. 

The result of the flutter analysis with and without the 𝑃1..6
∗  aerodynamic deriva-

tives is shown in Figure 6.5. It is noted that the critical wind speed corresponding 

to 𝑔 = 0.01 is virtually unaffected by the horizontal aerodynamic derivatives. 

Zooming in on the intersection points with the horizontal 𝑔 = 0.01 line it is found 

that 𝑈𝑐 = 112 m/s in case the horizontal aerodynamic derivatives are included and 

𝑈𝑐 = 113 m/s if the horizontal aerodynamic derivatives are omitted. Assuming 

unity mode shapes for ℎ1, 𝛼16 (section model) a critical wind speed 𝑈𝑐 = 111 m/s 

is obtained.                                               .

 

Figure 6.5 Result of the 4 mode flutter analysis for the SuTong Bridge with and without the hori-

zontal aerodynamic derivatives. 
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Mode Eigenfrequency Inertia 

1. Torsion (α16) 𝑓𝛼 = 0.506 Hz I = 2.98·10
6
 kgm

2
/m 

1. Vertical (h1) 𝑓ℎ1 = 0.177 Hz m = 21.7·10
3
 kg/m 

2. Vertical (h2) 𝑓ℎ2 = 0.307 Hz m = 21.7·10
3
 kg/m 

1. Horizontal (p16) 𝑓𝑝 = 0.506 Hz m = 21.7·10
3
 kg/m 

Table 6.1 SuTong Bridge dynamic properties applied in the flutter analysis. 

6.4 The Izmit suspension bridge 

The first suspension bridge FE model considered represents the 1550 m main span 

Izmit Bridge currently under construction in Turkey. This bridge, which has been 

used as an example when discussing two-degree-of-freedom analysis, carries a 6 

lane highway on a trapezoidal box girder. Two walkways are cantilevered at the 

apex points of the 35.8 m wide and 4.75 m deep section, Figure 5.4. The bridge 

girder is carried by two classical wire suspension cables arranged over the attach-

ment points of the cantilevered walkways. An isometric view of the FE model 

representation of the lowest torsion mode of the Izmit bridge is shown in Figure 

6.6. It is noted that the mode is symmetric about mid-span and it may also be rec-

ognized that the torsion mode 𝛼21 has very little horizontal movement 𝑝21 due to 

structural coupling as is highlighted in Figure 6.7. 

 

Figure 6.6 Isometric view of the FEM model of the Izmit bridge displaying the first torsion mode 

(symmetric). 

The FE model is loaded by a horizontal static load corresponding to a mean wind 

speed of 40 m/s at bridge girder level yielding a horizontal mean deck deflection 

of approximately 2.5 m at mid span. The participating modes in the analysis are 
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shown in Figure 6.7. Dynamic properties such as inertia and eigenfrequencies of 

relevance to the flutter analysis are given in Table 6.2. 

 

Figure 6.7 Vertical ℎ1, ℎ2, horizontal 𝑝21 and torsion mode shapes 𝛼21 considered for the Izmit 

Bridge flutter analysis. Mean wind deflection at mid span = 2.5 m. 

 

Figure 6.8 Result of the 4 mode flutter analysis for the Izmit Bridge with and without the horizon-

tal aerodynamic derivatives. Mean wind deflection at mid span = 2.5 m. 

The result of the flutter analysis is shown in Figure 6.8. It is noted that the critical 

wind speed corresponding to 𝑔 = 0.01 is 𝑈𝑐 = 66 m/s irrespective of the horizontal 

aerodynamic derivatives (𝑃1..6
∗ ) are included or not. This is not surprising in view 

of the very small horizontal deflection brought about by the structural coupling to 
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the torsion mode. Full aeroelastic testes of a 1:220 scale model of this bridge car-

ried out at the University of Milan yielded a critical wind speed 𝑈𝑐= 65 m/s in 

surprisingly good agreement with the flutter predictions. 

The experience gained from the flutter analysis and the full aeroelastic model 

wind tunnel tests of the Akashi-Kaikyo Bridge referred to in section 6.1 indicates 

that the torsion/horizontal coupling due to large mean wind deflections may yield 

a significant decrease of the flutter wind speed relative to the undeflected bridge. 

In order to investigate this scenario the mean wind deflection of the finite element 

model was increased to 36 m corresponding to approximately one deck width. 

The resulting mode shapes and the flutter calculation are shown in Figure 6.9, 

Figure 6.10 below. 

 

Figure 6.9 Vertical ℎ1, ℎ2, horizontal 𝑝21 and torsion mode shapes 𝛼21 considered for the Izmit 

Bridge flutter analysis. Mean wind deflection at mid span = 36.0 m. 

Comparison of the mode shapes in Figure 6.7 and Figure 6.9 reveals that the in-

creased horizontal static deflection gives rise to an increased amplitude of the hor-

izontal mode shape. Also the torsion/horizontal eigenfrequency increases slightly 

from 𝑓𝛼 = 0.258 Hz to 𝑓𝛼 = 0.271 Hz. However, the critical wind speed is not sig-

nificantly affected yielding a critical wind speed 𝑈𝑐 = 64 m/s whether or not the 

horizontal aerodynamic derivatives are included. 

Mode Eigenfrequency Inertia 

1. Torsion (α21) 𝑓𝛼 = 0.258 Hz I = 2.51·10
6
 kgm

2
/m 

1. Vertical (h1) 𝑓ℎ1 = 0.091 Hz m = 21.09·10
3
 kg/m 

2. Vertical (h2) 𝑓ℎ2 = 0.136 Hz m = 21.09·10
3
 kg/m 

1. Horizontal (p21) 𝑓𝑝 = 0.258 Hz m = 21.09·10
3
 kg/m 

Table 6.2 Izmit bridge dynamic properties applied in the flutter analysis. 
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Figure 6.10 Result of the 4 mode flutter analysis for the Izmit Bridge with and without the hori-

zontal aerodynamic derivatives. Mean wind deflection at mid span = 36.0 m. 

6.5 The Messina suspension bridge 

The second suspension bridge FE model considered represents the 3300 m main 

span Messina Bridge designed for crossing the Messina Strait, linking Sicily to 

the Italian main land. The bridge carries 6 lanes of highway traffic and two rail-

way tracks as well as cantilevered maintenance paths. The bridge deck is unique 

in that it is split in three separate box girder structures separated by air gaps but 

held structurally together by heavy cross beams. A design developed for en-

hancement of the aerodynamic stability. The bridge girder is supported by two 

twinned classical wire suspension cables arranged over the attachment points of 

the cantilevered maintenance paths. The deck cross section is a total of 60.0 m 

wide and the individual girders have a depth of 2.5 m, Figure 6.11. 

 

Figure 6.11 Deck cross section of the planned Messina Straits suspension bridge. 
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An isometric view of the FE model representation of the lowest torsion mode of 

the Messina Bridge is shown in Figure 6.12. It is noted that the torsion mode now 

is asymmetric about mid-span contrary to that of the Izmit Bridge but little hori-

zontal girder movement due to structural coupling is noted, Figure 6.13 as in the 

case of the Izmit Bridge. Dynamic properties such as inertia and eigenfrequencies 

of relevance to the analysis are given in Table 6.3. 

 

Figure 6.12 Isometric view of the FEM model of the Messina Bridge displaying the first torsion 

mode (asymmetric). 

 

Figure 6.13 Vertical ℎ1, ℎ2, horizontal 𝑝8 and torsion mode shapes 𝛼8 considered for the Messina 

Bridge flutter analysis. Mean wind displacement at mid span = 11.0 m. 

The Messina Bridge is equipped with large wind screens with airfoil dampers at 

the outer edges of the cantilevered maintenance service lanes and solid noise bar-
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riers running along the central railway girder. This configuration yields a relative-

ly high drag coefficient which in turn results in a horizontal static mean wind dis-

placement of approximately 11 m at the design wind speed of 54 m/s. 

As in the case of the Izmit Bridge the horizontal mean wind deflection produces a 

horizontal component of the governing asymmetric torsion mode (mode p8 in 

Figure 6.13). From Figure 6.14 it is noted that the horizontal component of the 

torsion mode has virtually no influence on the critical wind speed which is identi-

fied as 𝑈𝑐 = 87.5 m/s in case the horizontal aerodynamic derivatives are included 

or omitted from the analysis. 

 

Figure 6.14 Result of the 4 mode flutter analysis for the Messina Bridge with and without the hori-

zontal aerodynamic derivatives. Mean wind deflection at mid span = 11.0 m 

From Table 6.3 it is noted that the basic horizontal mode 𝑝2 is much closer in fre-

quency to the fundamental torsion mode (a frequency ratio 𝑓𝑝1/𝑓𝛼 of 0.68) than is 

common in suspension bridges with torsional stiff closed box girders. For the Iz-

mit Bridge 𝑓𝑝1/𝑓𝛼 is 0.2 as an example. The large wind screens which create sub-

stantial drag combined with the small frequency difference between the basic hor-

izontal and the torsion mode raises some concern that the basic horizontal mode 

would influence the flutter wind speed of the bridge through aerodynamic cou-

pling. This situation was investigated by introducing the first asymmetric horizon-

tal mode in the analysis. The four modes thus considered in the analysis are 

shown in Figure 6.15. It is noted that the horizontal component 𝑝8 has been re-

placed by the first asymmetric horizontal mode 𝑝2. 
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Figure 6.15 Vertical ℎ1, ℎ2, horizontal 𝑝2 and torsion mode shapes 𝛼8 considered for the Messina 

Bridge flutter analysis. Mean wind displacement at mid span = 11.0 m. 

 

Figure 6.16 Result of the 4 mode flutter analysis for the Messina Bridge with and without the hori-

zontal aerodynamic derivatives. Mean wind deflection at mid span = 11.0 m 

From Figure 6.16 it is noted that the horizontal 𝑝2 mode has slightly more influ-

ence on the critical wind speed than the horizontal component of the torsion mode 

𝑝8. The critical wind speed is identified as 𝑈𝑐 = 89.5 m/s in case the horizontal 

aerodynamic derivatives are included. If the horizontal aerodynamic derivatives 

are omitted the critical wind speed becomes 𝑈𝑐 = 87.5 m/s as in the 𝑝8 case dis-

cussed above. Assuming unity mode shapes for ℎ1, 𝛼8 (section model) a critical 

wind speed 𝑈𝑐 = 83 m/s is obtained. 
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Mode Eigenfrequency Inertia 

1. Torsion (α8) 𝑓𝛼 = 0.081 Hz I = 28.93·10
6
 kgm

2
/m 

1. Vertical (h1) 𝑓ℎ1 = 0.065 Hz m = 58.1·10
3
 kg/m 

2. Vertical (h2) 𝑓ℎ2 = 0.125 Hz m = 58.1·10
3
 kg/m 

1. Horizontal (p1) 𝑓𝑝1 = 0.055 Hz m = 58.1·10
3
 kg/m 

2. Horizontal (p8) 𝑓𝑝2 = 0.081 Hz m = 58.1·10
3
 kg/m 

Table 6.3 Messina Bridge dynamic properties applied in the flutter analysis. 

6.6 Conclusion of the three-degree-of-freedom flutter analyses 

The three-degree-of-freedom flutter analyses presented in the preceding sections 

demonstrates that the horizontal degree-of-freedom has little influence on the flut-

ter speed of the three cable supported bridges considered. In fact inclusion of the 

horizontal 𝑝2 for the Messina case yielded slightly higher critical wind speeds 

than if the horizontal mode was omitted from the analysis. This conclusion is per-

haps surprising in view of the experience quoted by Miyata [11] for the Akashi-

Kaikyo Bridge where flutter occurred at a lower wind speed when horizontal 

modes were included. 

An illustration of the reason why the horizontal aerodynamic derivatives does not 

contribute much to the predicted flutter speeds of the cases discussed above can 

be given by assessing the relative importance of the torsion and horizontal aero-

dynamic dynamic derivatives. An estimate of the torsion frequency ratio squared 

which defines the loss of stiffness in torsion and aerodynamic damping can be 

obtained by considering the torsion equation of motion similar to (5.52) but re-

taining only the 𝛼 and 𝑝 degrees-of-freedom: 

(
𝜔𝛼

𝜔
)
2

≈ 1 +
𝜌𝐵4

𝐼∗
𝐶𝛼𝛼𝐴3

∗ [1 +
𝐶𝛼𝑝𝐴6

∗

𝐶𝛼𝛼𝐴3
∗

𝑝

𝐵𝛼
+] 

  

(6.5) 

𝑔 ≈ (
𝜔

𝜔𝛼
)
𝜌𝐵4

𝐼∗
𝐶𝛼𝛼𝐴2

∗ [1 +
𝐶𝛼𝑝𝐴5

∗

𝐶𝛼𝛼𝐴2
∗

𝑝

𝐵𝛼
+] (6.6) 

The mode shape coefficients and the aerodynamic derivatives appearing in (5.70) 

and (6.6) for the Izmit and Messina bridges examples (𝑝2 mode included for the 

Messina case) are listed in Table 6.4. 

 𝐶𝛼𝛼 𝐶𝛼𝑝 (𝑈 𝑓𝐵⁄ )𝑐 𝐴3
∗  𝐴6

∗  𝐴2
∗  𝐴5

∗  

Izmit 0.245 -0.028 10 1.51 0.005 -0.47 0.04 

Messina 0.389 -0.377 20 2.29 -0.014 -0.7 -0.13 

Table 6.4 Mode shape coefficients and aerodynamic derivatives at the critical wind speed (Izmit 

𝑈 𝑓𝐵⁄ = 10, Messina 𝑈 𝑓𝐵⁄ = 20). 
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Assuming that at flutter the amplitude ratio 𝑝 𝐵𝛼 ≈ 1⁄ , the numerical value of the 

relative contribution of the horizontal mode at flutter is evaluated as shown in 

Table 6.5. In case of Izmit Bridge the estimated effect of the horizontal mode on 

stiffness and aerodynamic damping is less than 1% which is the likely reason that 

the critical wind speed is not affected by inclusion of the horizontal mode. For the 

Messina Bridge an 18% difference is noted on the aerodynamic damping which is 

in line with slight increase of the critical wind speed obtained when the horizontal 

mode is included. 

 (𝑈 𝑓𝐵⁄ )𝑐 𝐶𝛼𝑝𝐴6
∗ 𝐶𝛼𝛼𝐴3

∗⁄  𝐶𝛼𝑝𝐴5
∗ 𝐶𝛼𝛼𝐴2

∗⁄  

Izmit 10 -3.78⋅10
-4 

9.73⋅10
-3

 

Messina 20 5.93⋅10
-3

 -1.8⋅10
-1

 

Table 6.5 Relative contribution of the horizontal terms to the stiffness and aerodynamic damping 

at flutter for the Izmit and Messina bridges. 

Based on the cases studied above is it concluded that inclusion of horizontal 

modes in the flutter calculations are not significant for common cable supported 

bridges with single or tri- box girder decks. If any the effect of including the hori-

zontal mode is to slightly increase the critical wind speed compared to a classical 

two-degree-of-freedom analysis. It is noted that the cable supported bridges con-

sidered in the present analysis are bridges having very long spans and thus are 

characterized by relatively small structural coupling between the individual 

modes. The above conclusion may not hold for some smaller contemporary cable 

supported foot bridges which sometimes are built with pronounced curvature in 

the horizontal plane of the deck. 
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Symbols 

𝐴1..6
∗   Aerodynamic derivatives torsion degree of freedom 

𝐻1..6
∗   Aerodynamic derivatives vertical degree of freedom 

𝑃1..6
∗   Aerodynamic derivatives horizontal degree of freedom 

𝐵, 𝑏   Over all width of bridge deck 

𝐶𝐿   Lift coefficient 𝐿𝑎𝑒 ½𝜌𝑈2⁄ 𝐵 

𝐶𝑀   Moment coefficient 𝑀𝑎𝑒 ½𝜌𝑈2𝐵2⁄  

𝐼   Deck section mass moment of inertia 

𝐾   Non-dimensional frequency 𝜔𝐵/𝑈 

𝐿   Span length 

𝐷𝑎𝑒   Self-excited (motion induced) section drag force 

𝐿𝑎𝑒   Self-excited (motion induced) section lift force 

𝑀𝑎𝑒  Self-excited (motion induced) twisting moment 

𝑅   Radius of gyration 

𝑈, 𝑉  Mean wind speed 

𝑓, 𝑛, 𝑁  Frequency (Hz) 

𝑚   Deck section mass 

𝑖   Imaginary unit 

ℎ, ℎ(𝑠)  Vertical section displacement and mode shape 

𝑝, 𝑝(𝑠)  Horizontal section displacement and mode shape 

𝛼, 𝛼(𝑠)  Angular(twist) section displacement and mode shape 

𝑠   Span wise coordinate 

𝑥   Coordinate in the direction of flow 

𝜉   Relative coordinate in the direction of flow 

𝛤   Bound circulation 

𝛾   Wake vorticity 

𝜇   Mass ratio 𝜌𝐵2 𝑚⁄  
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𝜌   Air density 

𝜔   Circular frequency (rad/s) 

𝛿   Logarithmic decrement of damping 

𝜁   Viscous damping relative to critical 

𝑔   Apparent damping level 
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Appendix A. Evaluation of Work Supplied by Travelling Point Vortex 

This appendix details the mathematical evaluation of equation (4.19) valid for the 

travelling point vortex. 

 

Figure A1 Model of the aerodynamic moment on cross section as function 

The aerodynamic moment acting on the cross section during a half period (from 𝑡 

= 0 to 𝑡 = ½𝑇𝑠) is composed of two components: The moment that is created 

when the cross section starts it’s nose-up rotation at 𝑡 = 0 (full line) and the mo-

ment that was created at previous time 𝑡 = -½𝑇𝑠 when the section started the nose-

down rotation and still lingers (dashed line) as the half period is shorter than the 

time 2𝑇 it takes the vortices to travel from the upwind vertical girder to the 

downwind vertical girder. 

The non-dimensional moment associated with the nose-up motion at 𝑡 = 0 is pro-

portional to the following function: 

𝑀𝑢𝑝(𝑡) ≃ 𝐶𝑀0 (1 −
𝑡

𝑇
) (A1) 

Whereas the moment created at 𝑡 = -½𝑇𝑠 is proportional to:  

𝑀𝑑𝑜𝑤𝑛(𝑡) ≃ 𝐶𝑀0 (1 −
𝑡 + ½𝑇𝑠

𝑇
) (A2) 

The work supplied by the combination of the two vortices is obtained as the inte-

gration of the scalar product of moment and angular velocity over a half period: 

𝑊(𝑇) ≃ ∫ (𝑀𝑢𝑝 + 𝑀𝑑𝑜𝑤𝑛) ∙ 𝛼̇𝑑𝑡
½𝑇𝑠

0

= ∫ (𝑀𝑢𝑝 + 𝑀𝑑𝑜𝑤𝑛) ∙ ωcos (𝜔𝑡)𝑑𝑡
½𝑇𝑠

0

 
(A3) 

 

Inserting (A1) and (A2) in (A3) and noting that ½𝑇𝑠 = 𝜋 𝜔⁄   yields: 

𝑊(𝑇) ≃ ∫
𝜋𝐶𝑀0

𝜔𝑇
ωcos (𝜔𝑡)𝑑𝑡

2𝑇−
𝜋
𝜔

0

+ ∫ 𝐶𝑀0 (1 −
𝑡

𝑇
) ∙ ωcos (𝜔𝑡)𝑑𝑡

𝜋
𝜔

2𝑇−
𝜋
𝜔

 (A4) 

(A4) is evaluated as: 

𝑊(𝑇) ≃
𝐶𝑀0

𝜔𝑇
(1 − cos (2𝜔𝑇)) −  sin (2𝜔𝑇) (A5) 

α 

α 
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The above time integration over a half period of torsional oscillation ½𝑇𝑠 = 𝜋 𝜔⁄  

can be compared to integration of a single travelling point vortex over its travel 

time 2𝑇 across the deck: 

𝑊(𝑇) ≃ ∫ 𝑀𝑢𝑝 ∙ 𝛼̇𝑑𝑡
2𝑇

0

= ∫ 𝐶𝑀0 (1 −
𝑡

𝑇
) ∙ ωcos (𝜔𝑡)𝑑𝑡

2𝑇

0

 (A6) 

(A6) is evaluated as: 

𝑊(𝑇) ≃
𝐶𝑀0

𝜔𝑇
(1 − cos (2𝜔𝑇)) −  sin (2𝜔𝑇) (A7) 

Which is identical to (A5). 

It is thus concluded that integration over a single vortex passage will supply ex-

actly the same amount of work as integration of overlapping vortices over half an 

oscillation period. 

(A5) or (A7) is finally cast into the form of (4.19) by inserting 𝑇 = 2𝐵/𝑈. 
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Appendix B. Evaluation of circulation functions 

The circulation functions discussed in 5.2 may be evaluated as given below. 

The real and imaginary parts of the Theodorsen circulation function: 

𝐹(𝐾) =  

𝐽1 (
𝐾
2
)(𝐽1 (

𝐾
2
) + 𝑌0 (

𝐾
2
)) + 𝑌0 (

𝐾
2
)(𝑌0 (

𝐾
2
) − 𝐽1 (

𝐾
2
))

(𝐽1 (
𝐾
2) + 𝑌0 (

𝐾
2))

2

+ (𝑌0 (
𝐾
2) − 𝐽1 (

𝐾
2))

2  (B1) 

𝐺(𝐾) =  −
𝑌1 (

𝐾
2
)𝑌0 (

𝐾
2
) + 𝐽1 (

𝐾
2
) 𝐽0 (

𝐾
2
)

(𝐽1 (
𝐾
2
) + 𝑌0 (

𝐾
2
))

2

+ (𝑌0 (
𝐾
2
) − 𝐽1 (

𝐾
2
))

2 
(B2) 

Where 𝐽0(𝑥), 𝐽1(𝑥) and 𝑌0(𝑥), 𝑌1(𝑥) are Bessel function of the first and second 

kind of order 0 and 1 respectively. 

The real and the imaginary part of the "single vortex" circulation function: 

𝑓(𝐾) =  
1 − (

𝐾
2) 𝐼𝑠 (

𝐾
2)

(1 − (
𝐾
2
) 𝐼𝑠 (

𝐾
2
))

2

+ ((
𝐾
2
) 𝐼𝑐 (

𝐾
2
))

2 (B3) 

𝑔(𝐾) =  −
(
𝐾
2) 𝐼𝑐 (

𝐾
2)

(1 − (
𝐾
2
) 𝐼𝑠 (

𝐾
2
))

2

+ ((
𝐾
2
) 𝐼𝑐 (

𝐾
2
))

2 
(B4) 

Where the auxiliary functions 𝐼𝑠(𝑥), 𝐼𝑐(𝑥) are defined as follows: 

𝐼𝑐(𝑥) = −(
𝜋

2
) sin (

𝑥

2
) + 𝑆𝑖 (

𝑥

2
) sin (

𝑥

2
) + 𝐶𝑖 (

𝑥

2
) cos (

𝑥

2
) (B5) 

𝐼𝑠(𝑥) =  − (
𝜋

2
) cos (

𝑥

2
)+𝑆𝑖 (

𝑥

2
) cos (

𝑥

2
)−𝐶𝑖 (

𝑥

2
) sin (

𝑥

2
)  (B6) 

With 𝐶𝑖, 𝑆𝑖 being the cosine and sine integrals 

𝐶𝑖(𝑥) = 0.57722 + ln(𝑥) + ∫
cos(𝑡) − 1

𝑡
𝑑𝑡

𝑥

0

 (B7) 

𝑆𝑖(𝑥) = ∫
sin(𝑡)

𝑡
𝑑𝑡

𝑥

0

 (B8) 
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Appendix C. Flutter Determinant, Theodorsens Method 

Polynomial expansion of the two-mode flutter determinant following Thoedorsens 

method, section 5.5. Equation (81) can be expanded and split into the following 

algebraic equations: 

Real part 4th order polynomial: 

𝑋4 (1 +
𝜌𝐵4

𝐼
𝐴3

∗ +
𝜌𝐵2

𝑚
𝐻4

∗ +
𝜌𝐵4

𝐼

𝜌𝐵2

𝑚
(𝐴3

∗𝐻4
∗ − 𝐴2

∗𝐻1
∗ − 𝐴4

∗𝐻3
∗ + 𝐴1

∗𝐻2
∗))

+ 𝑋3 (2𝜁ℎ

𝜌𝐵4

𝐼
𝐴2

∗ + 2𝜁𝛼 (
𝜔𝛼

𝜔ℎ
)
2 𝜌𝐵2

𝑚
𝐻1

∗)

+ 𝑋2 (−(
𝜔𝛼

𝜔ℎ
)
2

− 4𝜁ℎ𝜁𝛼 (
𝜔𝛼

𝜔ℎ
) − 1 −

𝜌𝐵4

𝐼
𝐴3

∗ −
𝜌𝐵2

𝑚
𝐻4

∗)

+ (
𝜔𝛼

𝜔ℎ
)
2

= 0 

(C1) 

Imaginary part 3th order polynomial: 

𝑋3 (
𝜌𝐵4

𝐼
𝐴2

∗ +
𝜌𝐵2

𝑚
𝐻2

∗ +
𝜌𝐵4

𝐼

𝜌𝐵2

𝑚
(𝐴2

∗𝐻4
∗ + 𝐴3

∗𝐻1
∗ − 𝐴4

∗𝐻2
∗ − 𝐴1

∗𝐻3
∗))

+ 𝑋2 (−2𝜁ℎ (1 +
𝜌𝐵4

𝐼
𝐴3

∗) − 2𝜁𝛼 (
𝜔𝛼

𝜔ℎ
)(1 +

𝜌𝐵2

𝑚
𝐻4

∗))

+ 𝑋 (−
𝜌𝐵2

𝑚
(
𝜔𝛼

𝜔ℎ
)
2

𝐻1
∗ −

𝜌𝐵4

𝐼
𝐴2

∗) + (2𝜁ℎ (
𝜔𝛼

𝜔ℎ
)
2

+ 2𝜁𝛼 (
𝜔𝛼

𝜔ℎ
))

= 0 

(C2) 

Equations (C1), (C2) are usually solved by numerical iterative methods as func-

tion of non-the dimensional wind speed for which the aerodynamic derivatives are 

measured. The non-dimensional wind speed at which the root curves intersect 

defines the flutter point. 

A useful first guess for the solution may be arrived at by setting the structural 

damping levels 𝜁ℎ, 𝜁𝛼 equal to zero. In this case (C1), (C2) are reduced to second 

and first order equations for which the solution can be obtained analytically. 
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Appendix D. Aerodynamic derivatives for three bridge girder sections. 

Vertical Aerodynamic Derivatives. 
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Torsion Aerodynamic Derivatives. 
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Horizontal Aerodynamic Derivatives. 
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