
Årgang XCI, Nr. 1, maj 2021 

 

   

 

 

BYGNINGSSTATISKE 

MEDDELELSER 
 

udgivet af 

 

DANSK SELSKAB FOR BYGNINGSSTATIK 

 

 

Proceedings of the Danish Society for Structural Science and Engineering 

 

   

 

Jacob Nørregaard, Mathias Hagbarth, Pernille L. Andersen, Sandro D. R. Ama-

dor, Evangelos I. Katsanos, Rune Brincker:  

Estimating the Location and Magnitude of a Point Mass Added to a Steel Struc-

ture Using OMA and MVLR ……………………………………………….....1-10 

 

Lars German Hagsten, Jakob Fisker: Capacity assessment of the Örnsköldsvik 

Bridge on the basis of plastic analysis …………………………………...…..11-19 

 

Bo G Hellers, Håkan Sundquist: A form finding problem – the end supported can-

tilever beam…………………………………………….………………...…...21-45 

 

 

  

 

 

 

 

 

KØBENHAVN 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eftertryk uden kildeangivelse ikke tilladt 

Copyright © 2021 ”Dansk Selskab for Bygningsstatik”, København 

ISSN 1601-6548 (online) 



 

 

Årgang XCI, Nr. 1, maj 2021 

 

   

 

 

BYGNINGSSTATISKE 

MEDDELELSER 
 

udgivet af 

 

DANSK SELSKAB FOR BYGNINGSSTATIK 

 

 

Proceedings of the Danish Society for Structural Science and Engineering 

 

   

 

Jacob Nørregaard, Mathias Hagbarth, Pernille L. Andersen, Sandro D. R. Ama-

dor, Evangelos I. Katsanos, Rune Brincker:  

Estimating the Location and Magnitude of a Point Mass Added to a Steel Struc-

ture Using OMA and MVLR ……………………………………………….....1-10 

 

Lars German Hagsten, Jakob Fisker: Capacity assessment of the Örnsköldsvik 

Bridge on the basis of plastic analysis …………………………………….....11-19 

 

Bo G Hellers, Håkan Sundquist: A form finding problem – the end supported can-

tilever beam…………………………………………….………………...…...21-45 

 

 

 

 

 

 

 

KØBENHAVN 2021 



 

 

 

 

 

 

 

 

 

 

 

Redaktionsudvalg 

 

Lars German Hagsten (Redaktør) 

Rasmus Ingomar Petersen  

Finn Bach 

Morten Bo Christiansen 

Sven Eilif Svensson 

Mogens Peter Nielsen 

Linh Cao Hoang 

Jakob Fisker 

 

 

 

 

 

 

 

 

 

 

 

 

 

Artikler offentliggjort i Bygningsstatiske Meddelelser har gennemgået review. 

Papers published in the Proceedings of the Danish Society for Structural Science 

and Engineering have been reviewed. 



 

  

Estimating the Location and Magnitude of a Point Mass 

Added to a Steel Structure Using OMA and MVLR 
 

 Abstract  1     

1 Introduction 1  

2 Theoretical Background 2 

 2.1  Time Domain Poly Reference with Condensation 2 

 2.2 Multi Variate Linear Regression 3 

3 Structural Model  4 

4 Point Mass Scenarios 4 

5 Investigation of Predictors for MVLR 5 

6 Best Combination of Predictors 7 

7 Results  8 

8 Conclusions 9 

9 References  9 

 

 

Capacity assessment of the Örnsköldsvik Bridge on the 

basis of plastic analysis  
 

 Abstract  11     

1 Introduction 12 Introduction 1 1 

2 Characteristics of the Örnsköldsvik bridge 12 

3 Theory of Plasticity  13 

 3.1 Dissipation 13 

 3.2 External Work 14 

4 Analysis of Failure Mechanisms 14 

 4.1 Mechanism 1 (Pure Bending) 14 

 4.2 Mechanism 2 (Local Shear) 15 

 4.3 Mechanism 3 (Local Shear and Bending) 16 

 4.4 Mechanism 4 (Global Shear and Bending) 16 

5 Discussion   17 

6 Conclusions 18 

 References  18 

 

A form finding problem – the end supported cantilever 

beam 
1 Introduction - the problem  21   

 1.1 Some general discussion 22 

 1.2 General equations for “Euler-Bernoulli Beams”  22 

2 Solutions for continuous variation of beam stiffness 22 

 2.1 Introduction  22 

 2.2 Numerical solution of Eq. (2-5)  23 



 

 

 

 2.3 The case n      27 

3 Stepped haunch 29 

 3.1 Analytical solution for the stepped beam 29 

 3.2 Numerical solution 37 

 3.3 Using computer tools to find the largest hogging moment 40 

 3.4 Obviously 40 

 3.5 Equilibrium 41 

4 Notations  44 

5 References  44 

 

    

  

 

 

  

 
 

 



BYGNINGSSTATISKE MEDDELELSER 

Proceedings of the Danish Society for Structural Science and Engineering 

Edited and published by the Danish Society for Structural Science and Engineering 

Volume 91, No. 1, 2021. 

 

 

 

 
 

 
 

Estimating the Location and Magnitude of a 

Point Mass Added to a Steel Structure Using 

OMA and MVLR 
 

 

Jacob Nørregaard1 

Mathias Hagbarth1 

Pernille L. Andersen1 
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Rune Brincker1 

ABSTRACT 

This numerically based study presents a methodology for estimation of magnitude and localization of a 

point mass added on a small and simple steel structure. This study is linked to the topic Structural 

Health Monitoring (SHM) aiming to monitor civil engineering structures and detect when a damage has 

occurred. For this study, a Finite Element (FE) model is used and the damage is simulated by an added 

point mass. Operational Modal Analysis (OMA) are used to monitor the structure, and Time Domain 

Poly Reference (TDPR) with condensation are used to identify the modal parameters and mode shapes. 

Multiple different scenarios with a point mass of different mass magnitude added at different locations 

of the structure are considered in this study. This scenario based approach and a Multi Variate Linear 

Regression (MVLR) are used to determine a final model predicting the state of the structure. The results 

show that the methodology of combining OMA and MVLR can be used for detection of a structural change 

and return an estimate of the magnitude and location of the point mass with an acceptable accuracy. 

 
1. INTRODUCTION 

This article is related to SHM of civil engineering structures. SHM is used to ensure a safely functioning 

structure throughout its lifetime by detecting when a damage occurs. Damage is indicated by detection of a 

structural change, for example a change in the stiffness or the mass of the structure. Based on a detected 

structural change further investigations are carried out to validate the state of the structure and whether a 

repair is needed. To increase the effectiveness of the investigation the aim is not only to detect that a 

structural change has occurred, but also get an indication on the location and magnitude of the damage. 

A reasonably new field in SHM is the use of OMA. An advantage of OMA is that it is an output-only 

method based on the vibration of the structure, and hereby it is not necessary to know the loading. OMA 

monitoring operates at operational conditions, which means a continuous monitoring can be performed. 
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The applicability of OMA for the purpose of SHM has been demonstrated in multiple articles, e.g. [1–3]. 

These articles demonstrate how an OMA based SHM monitoring system has been used on large civil 

engineering structures to detect structural changes. In [4, 5] it is furthermore shown how the modal parame-

ters are affected by added mass both to a small steel structure and a 5-story building during the different 

stages of construction. These articles however do not cover how to determine the magnitude and location of 

the added mass. The study given in [6] shows how the scenario based approached together with OMA 

can be used for localization, this study however focuses on load identification and not detection of a structur-

al change. A similar scenario based approach will be used in this study, which means different cases of a 

point mass added to the structure will be considered. In each scenario, an OMA identification will be 

performed, and the results obtained will be used to predict the state of the structure. 

Based on the articles presented in this section it is shown how an added mass affect the modal parameters 

of a structure, and furthermore how OMA can be used for localization and magnitude determination on 

impulse load in a scenario based approach. The scope of this study is to combine OMA and MVLR to 

determine the location and magnitude of an added point mass. The scenario-based approach used in this 

study includes multiple mass cases to determine a prediction model based on MVLR. The aim of the 

MVLR analysis is to obtain a well performing and consistent model predicting the state of the structure. 

The prediction will be based on outputs of the OMA identification technique. The work presented in this 

article is based on the master thesis "Detection of Structural Changes" [7]. 

 
2. THEORETICAL BACKGROUND 

Multiple different OMA identification techniques can be used to identify modal parameters, an overview 

on some of the most common methods are given in [8,9]. For this study, the TDPR [10] with condensation 

[11] will be used. Furthermore, a brief presentation of MVLR [12] can be found in this section. 

 
2.1. Time Domain Poly Reference with condensation 

The original article on TDPR uses the free decays of the structure while for the theory presented below 

the free decays is represented by the correlation functions as given in [9]. The TDPR is based on the 

difference equation given in equation (1) 

y(n) − A1y(n − 1) − A2y(n − 2) − · · · − Ana(n − na) = 0                                                               (1) 

where y(n) is the discrete correlation functions of time lag n, A contains the Auto Regressive (AR) coef-

ficients and na is the memory of the previous outputs. In equation (1) only the AR coefficients are pre-

sent due to the assumption of the correlation function acting as a free decay and hereby the Moving Av-

erage part vanishes. Stacking the free decays in the ud(n) vector and the AR coefficients in the compan-

ion matrix AC, the following equation can be obtained: 

 
It is assumed that the free decay can be formulated as y(n) = beλnΔt where b is the mode shape, λ is the contin-

uous time pole and Δt is the time increment. From this, ud can be rewritten in the following form: 
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and equation (2) can be expressed as: 


c d d

μA                                                                                                                                                                                          (4) 

where μ= eλΔt. Eigenvalue decomposition of the companion matrix will return the discrete time poles μ and the 

eigenvectors φd , which is then used to determine the natural frequencies and the mode shapes. In TDPR the first 

step is to calculate an estimate of the companion matrix, this is done by initially defining a Hankel matrix (H1) 

and a Hankel block row (H2) as given below: 

1

1 2

2 3 1

1 1

 ( )  ( ) (np na)

 ( )  ( ) (np (na ))

(na) (na+ ) (np )

y y y

y y y
H

y y y
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                                                                                                                              (5) 

 2
1 2(na+ ) (na+ ) (np)H y y y                                                                                                                                        (6) 

where np is the number of discrete points in the free decay. When H1 and H2 is determined, equation (1)                  can 

be rewritten. An estimate of the companion matrix is given in equation (7) 

Â= H2H+
1                                                                                                                                                                                                        (7) 

where the pseudo inverse is denoted by ()+  and Â  is the estimate of the companion matrix.  Once Â  is calcu-

lated the eigenvalue decomposition can be performed to determine the frequencies and mode shapes. Before ap-

plying TDPR the number of channels is reduced into pseudo channels using condensation. The main assump-

tion of condensation is that the physical modes are more dominant than the noise modes. Based on this as-

sumption the correlation function at time lag zero (R(0)) can be expressed as: 

0

0

2 2

1 2 1

0 T T

n n n n
( ) γ γ

N N

n n N

R b b
  

                                                                                                                                                                      (8)  

where the first sum from n = 1 to 2N0 represent the physical modes while the second sum 

from   n = 2N0 + 1 to N are the noise modes and γ is the participation vector. Based on the assumption 

a Singular Value Decοmposition can be used to separate the physical modes from the noise modes. 

To obtain the mode shapes of the structure using the original number of channels the mode shapes deter-

mined with condensation must be transformed. Transformation of the mode shapes and a more com-

prehensive presentation on the theory of condensation is given in [11]. 

 
2.2. Multi Variate Linear Regression 

The main principles of MVLR are presented in this section. For further information regarding MVLR see 

[12]. The main equation in MVLR is 

 + Y Z                                                                                                                                                                                                          (9) 

where Y is the response matrix, the Z matrix contains the predictors, β is the unknown regression coefficient 
matrix, and the error matrix is denoted as ε. β and ε are unknown, however an approximation of the regression 

coefficient matrix ( ̂ ) can be determined by equation (10) 

 
1ˆ Z Z Z


                                                                                                                                                                                       (10) 

The estimated regression coefficients can then be used to predict new responses in Ŷ 0.   

0 0
ˆŶ Z                                                                                                                                                                                                         (11) 

l
: 
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In this study, the ̂  is determined based on the scenarios included in the simulations. The OMA identified quanti-

ties are assembled in the Z0 matrix and together with the estimated beta coefficients the state of the structure are 

revealed in Ŷ 0  by equation (11). 

 

3. STRUCTURAL MODEL 

The simulations will be carried out based on a FE model of a small steel structure. The structure consists    

of two parts, a column and a plate attached at the top of the column. The column is a 20 x 20mm SHS 

profile with at thickness of 2 mm; the remaining dimensions can be seen in Figure 1 a). As illustrated in 

Figure 1a) the coordinate system is placed centrally in the bottom of the column. The FE model is gen-

erated in Ansys where the column is fully fixed in the bottom, and with a fixed connection between the 

column and the plate. The FE model is meshed with a 20-node solid 3D element with 3 translational 

degrees of freedom in each node. 134 elements and 666 nodes are used to mesh the model. The weight 

of the structure is approximately 20 kg and steel with a Young’s modulus of 200 GPa is used. 

 

 

Figure 1: a) Drawing of the structural model b) Mode shapes of the first five modes. 

 

This study only focuses on the first five modes illustrated in Figure 1 b). The natural frequencies have 

been obtained from the FE software Ansys, and the first five natural frequencies are: 2.812 Hz, 2.847 

Hz, 5.965 Hz, 18.184 Hz and 21.588 Hz [7]. The two lowest frequencies corresponds to the first bend-

ing mode in x and y respectively, the third frequency is the torsional mode and the fourth and fifth fre-

quency are the second bending mode in x and y respectively. 

 
4. POINT MASS SCENARIOS 

Due to double symmetry conditions, the point mass will only be applied to the top plate in the first 

quadrant of the Cartesian coordinate system as illustrated in Figure 2. A 5x5cm grid is made in the xy-

plane resulting in 42 different mass locations. A mass position number is assigned to each of the inter-

sections of the gridlines. Only one point mass is added in each scenario and 4 different mass magnitudes 

are considered which results in 168 different mass cases. The four point mass magnitudes corresponds 

to 2.5%, 5%, 7.5% and 10% of the structural weight. Based on each mass case the corresponding mass 

and stiffness matrix have been extracted from the FE model and afterwards a response representing a 

physical measurement is generated in a MATLAB script. For each mass case, 10 responses are gener-

ated resulting in 1680 data sets. Following the generated responses, TDPR with condensation is used to 

identify the modal parameters and the mode shapes for the five modes of interest. 

a) b) 
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Figure 2: Illustration of the 42 positions where a point mass will be added. 

 

5. INVESTIGATION OF PREDICTORS FOR MVLR 

Utilizing the OMA identification technique the natural frequencies of the first five modes has been deter-

mined for all 1680 cases. To show how the frequencies depend on both magnitude and location of the 

added point mass some of the identified frequencies are presented in the plots below. The plots only 

include cases where the point mass is added on the x- and y-axis. The graphs show that the frequency 

of mode 2 and 5 are almost independent on the x-position, Figure 3 a), while the frequency of mode 1 

and 4 are almost independent of the y-position, Figure 3 b). The frequency of mode 3 (torsional mode) 

change equally as a function of distance to the center for both x and y position. For all modes, it should 

be noted that the frequencies are lower with a higher mass magnitude. Ten markers are found for each 

scenario corresponding to the 10 responses generated for each mass case at each position. A tendency 

following a second order polynomial is found for the majority of the modes, and a good agreement is 

found between identified values and the FE based values illustrated by a solid line. 

a) Point mass added at location 42, 36, 30, 24, 18, 12, and 6 
 

b) Point mass added at location 42, 41, 40, 39, 38, and 37 
 

* No mass × 2.5 % Mass ◦ 5.0 % Mass ◊ 7.5 % Mass + 10 % Mass 

— 2.5 % Mass (Ansys) − 5.0 % Mass (Ansys) − 7.5 % Mass (Ansys) − 10 % Mass (Ansys) 

Figure 3: Frequency as a function of the position on the main axis and the magnitude of the point mass. Markers 

represent the identified frequencies and the line represents the FE obtained frequencies. 



6 

 

 

 

• 

 

In Figure 3, a tendency can be observed, however a discontinuity deviating from this tendency was found 

when including all 42 mass positions. In Figure 4 a), two 3D plots of the frequency of mode 5 as a func-

tion of all 42 mass positions can be seen. For the 3D plot with a mass of 0.5 kg (blue), the frequency fol-

lows the tendency of the 2D plots shown in Figure 3. However when the point mass is 2 kg (orange) the 

discontinuity can be seen in the lower left corner of the 3D plot. This discontinuity was not intended dur-

ing the design of the model, and further investigation was performed to validate this unexpected behav-

ior of the identified natural frequencies. Investigation of the mode shapes revealed a change in the system, 

showing that the mode shapes changed from xy-bending modes to modes in the diagonal of the plate. 

This is illustrated in Figure 4 where the mode shape for the first bending mode when a 2 kg point mass is 

added has been illustrated. The same phenomenon can be observed in the other bending modes. This 

phenomenon is important to keep in mind when analyzing and evaluating the performance of the final 

prediction model. For further information about the discontinuity, the readers may see elsewhere [7]. 

 

 

 

Figure 4: a) 3D plots of frequency for mode 5 in all 168 positions for a 0.5 kg and 2 kg point mass b) Mode shape 

when a 2 kg point mass is added at position 37, 31, and 25. Mode shapes illustrated how the first bending mode 

changes towards a diagonal bending mode. Color bar indicate total deformation. 

 

 

Figure 5: a) Illustration on how the point mass influences the first two mode shapes. denotes the point mass. b) 

Angle of rotation as a function of x and y position. 

b) 

a) b) 
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An observation similar to what is presented in [4] shows that a detectable rotation of the top plate de-

pendent on location and magnitude can be extracted from the mode shapes as seen in Figure 5. As illus-

trated, the x-position provokes a rotation of the second mode and the y-position provokes a rotation of 

the first mode. A linear dependency between mass, location and angle of rotation was observed as illus-

trated in Figure 5 b). However, in the scenarios with the discontinuity the rotation angle deviates from the 

general tendency. The deviation is also a result of modes being closely spaced and modes shifting in 

some of the scenarios. The Modal Assurance Criterion (MAC) was also considered however the values 

of the angle of rotation was more consistent which is why it was preferred over the MAC values for the 

MVLR analysis, this has been further explained in [7]. 

 

6. BEST COMBINATION OF PREDICTORS 

Multiple different combinations of predictors in the MVLR has been considered in order to determine 

the best model. Due to computational capacity no more than 16 predictors was included in each of the 

considered combinations. All possible combinations with three of the groups in Table 1 were consid-

ered yielding 35 combinations, which are hereinafter referred to as COPG (Combination of Predictor 

Groups). Within a COPG all possible predictor combinations have been investigated, e.g. 15 predictors in a 

COPG 215 = 32.768 combinations. Analysis showed that the best performing combination for a COPG 

does not necessarily contain all the predictors. A comprehensive presentation on how the seven groups 

was selected can be found in [7]. 

Table 1: Groups of predictors to be used in the MVLR analysis. 

Group A    f1    f2   f3    f4    f5  

Group B 
1f  2f  3f  4f  5f   

Group C 
1

2f  
2

2f  2

3f  2

4f  2

5f   

Group D 1 3f f  1 4f f  2 3f f  2 5f f  3 4f f  3 5f f  

Group E 11/ f  21/ f  31/ f  41/ f  51/ f   

Group F 
1

21/ f  
2

21/ f  2

31/ f  2

41/ f  2

51/ f   

Group G θ1 θ2     
 

To evaluate the performance of each COPG a 10/90 test-training split is performed, where 90% of the 

1680 data sets are used to train the model and the remaining 10% are used to test the model. The 10% 

are randomly selected among the 1680 data sets. The test-training process is repeated 100 times for each 

of the COPG’s and evaluated based on the lowest root mean square error (rmse). Where the rmse is 

calculated based on the predicted magnitude and location of the mass and the known magnitude and 

location. The best solution is found for each repetition and might not contain the same predictors in all 

100 repetitions for a given COPG. The most frequently occurring best solution is selected for each COPG 

and used for further analysis and hereby reducing the number of combinations in each COPG to 1 for all 

35 COPG’s. 100 new repetitions are made on the 35 COPG’s based on the same 10/90 test-training data. 

For each of the 100 repetitions a new ̂  is determined. Since the aim is to get a single ̂  usable for detecting 

all the different scenarios, the scope is to have beta values with a low variance over the 100 repetitions. 

Furthermore, the beta values of the selected best model must be reasonably low to avoid overfitting. A 

combination of the rmse and the beta values are used to determine the best model, i.e. the combination 

of predictors in the final MVLR model. In terms of low rmse many of the COPG’s performed equally 

with an approximate mean rmse of 0.04 for the mass and 0.025 for the xy-position in 100 repetitions. For 

this analysis, the beta values were inconsistent for the different COPG’s. Based on the rmse and beta 

values the best model has been selected containing the following predictors [7]. 

2 2 2 2

0 1 2 3 5
1

1 2 4 5 1 3 1 4 2 3 2 5 3 4 3 5
f f f f f f f f f f f f f f f f f f f fz                  (12) 
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Figure 6: Error bar plot of the beta values obtained in 100 repetitions with the predictors given in z0 

For this specific model the mean and 99.7% confidence interval of the beta values can be seen 

in Figure 6, based on the 100 repetitions. The mean of the beta values, with this exact combina-

tion, is used to define ̂ . With the established ̂ , the state of the structure can be determined by 

equation (11) and the OMA identified quantities in z0. 

 
7. RESULTS 

Based on the best model a MVLR is made on all of the simulations, i.e. all of 1680 cases. This gives a 

Z0 of the dimension [1680 x 15] and a response matrix Ŷ 0 of dimension [1680 x 3].   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Error in mass and location prediction of a 0.5 kg and 2 kg point mass. Mass error in percentage and 

location error in m. Color of the squares represent the mean error. Red colored value is the 99.7 % confidence 

error. 
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In the figure 7 the mean error in each position is calculated based on the known input values and the 

predicted values. The black number is the mean error and the red number is the 99.7% confidence error. 

Results presented in this article only include the point mass equal to 2.5% and 10% of the structural 

weight, plots regarding 5% and 7.5% can be seen in [7]. In general, the results show that the mean error of the 

mass prediction for 0.5 kg is approximately 25 g and the mean error for the 2 kg case is approximately 40 g. 

Note that for the mass prediction the error and confidence interval is given in percentage. 

When predicting the location, the mean error is given in m. For the smallest point mass considered, the 

prediction has difficulties when the point mass is placed close to the main axis. This is because a small 

mass does not a large impact on the frequency when the point mass is placed close to the main axis, as 

illustrated in Figure 3. Furthermore, it can be seen that the discontinuity effects the prediction, this is 

especially clear for the x-prediction in the 2 kg case. For the majority of the predictions the mean error 

is smaller than 0.03 m. 

 
8. CONCLUSION 

The present study shines light on how a structural change can be detected based on modal parameters. In 

this study, it is shown how the output-only OMA based identification technique TDPR with condensation 

combined with MVLR can be used to predict the state of a structure. Results presented in the previous 

section proves the potential of this methodology for estimating the magnitude and location of a point 

mass. The general precision of the estimated mass magnitude and location are within an acceptable 

range, with a maximum error of    55 g for the mass prediction and a mean error smaller than 0.03 m for 

the majority of the location predictions. The prediction model presented in this study is not a general 

model for all structures, however the methodology of the scenario based approach together with OMA 

and MVLR can be applied to other structures. It is important to highlight that one of the limitation of 

the scenario-based approach is that the model has only been trained on specific cases limiting the final 

model. In this study only one point mass is added in each scenario, and the model will therefore not be 

able to detect if multiple point masses are added. In addition, it is unknown how the model will per-

form if the point mass magnitude exceeds 2 kg. This study is numerical and based on a simple structure, 

which means further investigations, including experimental studies, are needed to prove the potential of 

this methodology for the purpose of SHM. 
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Capacity assessment of the Örnsköldsvik 

Bridge on the basis of plastic analysis 

Lars German Hagsten 

Jakob Fisker1,2 

Abstract 

In 2006 an old concrete railway bridge in Sweden, the Örnsköldsvik bridge, was tested to failure on 

site. The bridge had been decommissioned after some fifty years in service. The tests formed the 

basis for an extensive research programme concerning capacity assessment of existing concrete 

bridges, with special focus on the development of numerous advanced finite element models. In this 

paper the Örnsköldsvik bridge is analysed on the basis of the theory of plasticity, and more specifi-

cally, the upper bound method or kinematic method. This is achieved by setting up a number of kin-

ematically admissible failure mechanisms and calculating the corresponding load capacity to each of 

these mechanisms. In the paper four different failure mechanisms of different complexity are ana-

lysed. It turns out that the critical mechanism can be described as a combination of bending and 

shear in different parts of the bridge. The calculated critical capacity is in good agreement with the 

capacity observed in the test. In addition, the critical mechanism is found to comply with the report-

ed observations. It is illustrated, that the upper bound method not only constitutes a method for de-

termination of the capacity. It is also a method that allows for important aspects of the physical be-

haviour of the structure as-build to be highlighted, and critical parts of the structure to be identified. 

The method thereby serves as an important tool, especially, in relation to assessment of existing 

structures. Furthermore, the upper bound method allows for quick estimates that are useful in com-

bination with more time-consuming finite element based approaches. 

1. Introduction 

Activities related to conservation of existing concrete bridges constitutes a significant part of daily 

practice within bridge engineering. This involves assessment of structural integrity and capacity, 

and, if needed, measures concerning appropriate ways of strengthening. The assessment of existing 

concrete bridges is a complicated task, that besides inspection of exiting drawings typically also 

includes an inspection of the as-build conditions and state of deterioration; possibly supplemented 

by testing for basis material properties of steel and concrete. This requires prior detailed knowledge 

of the anticipated structural behaviour and the corresponding critical parts in order to focus the at-

tention of on-site inspections on these parts of the structure.     

    

1 Aarhus University School of Engineering, 8000, Aarhus Denmark 
2 COWI A/S, 8000 Aarhus, Denmark 
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Throughout the years invaluable insights in regards to structural behaviour and remaining capacity 

of existing concrete bridges has been gained through full scale testing of decommissioned concrete 

bridges, and quite often a substantial gap between predicted capacity and actual capacity, measured 

on the basis of tests, has been observed. Especially when considering failure modes resembling 

shear- or punching shear failures, as revealed in a number of works involving testing and assessment 

of existing bridges, see e.g. [1],[2],[3] & [4]. 

Various strategies have been proposed and implemented in order to deal with this apparent gap be-

tween predicted capacity and actual capacity. One approach is the use of proof loading as the basis 

for load rating and upgrading; especially in cases where original project material is insufficient, 

and/or the bridge suffers from significant deterioration, see e.g. [4][6][7]. As an alternative to proof 

loading others advocates for procedures involving mainly non-linear FE analysis of gradually in-

creased complexity, see e.g. [5]. In line with the “level-of-approximation”-philosophy of the fib 

model-code, the ambition put forward is to obtain more accurate predictions as the “level of assess-

ment” is increased. 

The often observed gap between predicted and actual capacity, can in the review of drawings and 

static models of existing bridges to a large extent be seen as the result of a discrepancy between the 

actual structure and assumed static behaviour. It is not a matter of applying more sophisticated mod-

els but more a matter of applying (simple) models reflecting the structural behaviour of the design. 

This paper presents an analysis of a reinforced concrete integral bridge by application of the upper 

bound theorem of the theory of plasticity. The approach is based on possible failure mechanisms 

rendering, not only a predicted capacity, but also highlights the physical behaviour and the critical 

parts of the structure/bridge.  

2. Characteristics of the Örnsköldsvik bridge 

The two-span bridge was tested to failure on-site by the application of mainly concentrated loads. 

An elevation of the bridge is shown in Figure 1. The concentrated loads were applied at the centre 

of the left span. The self-weight, including gravel fill-in, was approximately 84 kN/m [3]. 
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Figure 1. Elevation of the Örnsköldsvik bridge. Reinforcement is not shown. 

Due to variations of the structural height of the beam-segments near the supports and to varying 

degree of top- and bottom longitudinal reinforcement the moment capacity varies along the beam-

segment. The diagram in Figure 2 illustrates the moment capacity as a function of the distance, x, 

from the inner face of the left support (origin shown in Figure 1). The moment capacity is calculated 

on the basis of a constant stress, fc, in compressive zone. Reinforcement in compression is not taken 

into account.  

Prior to the test, the left span (the loaded span) was strengthened with a total of twenty CFRP bars at 

the bottom face. For this reason, the positive moment capacity of the left span was significantly 

greater than the positive moment capacity of the right span. The bridge was slightly curved in plan. 

However, previous analysis has shown that the influence of the thereby introduced torsion is limited 

[8] and will be ignored in the following. 
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The measured average concrete compressive strength was approximately fc = 68.5 MPa, while the 

yield strength of the reinforcement was fy = 441 MPa (Ø16) and fy = 411 MPa (Ø25). The strength 

of the CFRP-stribs was fCFRP = 2266 MPa. 

 

 

Figure 2. Positive and negative moment capacity as function of the distance from inner face of the left support  

(see Figure 1) 

3. Theory of Plasticity 

Upper bound solutions are based on kinematically admissible failure mechanisms, and the load car-

rying capacity is then determined using the work equation, where the internal work (the dissipation) 

is equalled with the external work of loads. Material are assumed perfectly plastic, and all displace-

ment increments are assumed localised along certain failure lines or in plastic hinges. The part of the 

structure in between failure lines or plastic hinges is regarded as rigid.  

3.1 Dissipation  

For a given failure mechanism and corresponding relative displacement increments, the dissipation 

per unit area due to sliding along a failure surface in the concrete is evaluated as;  

                                                                             (1) 

In (1) u represents the relative displacement increment, while  is the angle between the direction of 

the relative displacement and the failure surface, see Figure 4. The effective strength of the concrete 

is evaluated by the introduction by the effectiveness factor taken as;  

                                                                             (2) 

This effectiveness factor includes the classical expression for members reinforced with distributed 

shear reinforcement. As the structure, and specifically the primary beams, is rather massive, and 

reinforcement is only placed along the outer edges, a large part of the concrete away from the edges 

were left with no reinforcement. For this reason, the classical effectiveness factor is multiplied by 

0.5 according to works of Nielsen and co-workers [9].  

 

In the specific case of a plastic hinge the dissipation due to an increment rotation is evaluated as;  

                                                                             (3) 

Here  is the rotation in the plastic hinges and M is plastic moment capacity of the hinge, see also 

Figure 3. Reinforcement crossing the failure surface will also provide resistance towards failure. 
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The reinforcement is assumed to be inactive with respect to compression, and the contribution from 

the reinforcement is thus evaluated simply as the work done/dissipation during an incremental elon-

gation under the assumption of tensile yielding. Any other resistance offered by the reinforcement is 

ignored. 

3.2 External work  

The external work is determined as the product of the incremental downward displacement at the 

position of the load and the load. The extension of the loading plates is not taken into account when 

calculating the external work, and the concentrated load is thus assumed to act in a single point. The 

contribution from distributed load will also be included.  

4. Analysis of failure mechanisms 

A total of four failure mechanisms (1 to 4) will be presented and analysed. The three first mecha-

nisms only activates the left span, subjected by the concentrated loads, while the 4th mechanism in-

volves a greater part of the bridge.   

Mechanism 1 is considered in order to examine the bending capacity of the element in the left span, 

and only involves rotational displacements, while Mechanism 2 is introduced in order to examine 

the shear capacity in the region of the concentrated loads. The mechanism violates the geometrical 

boundary conditions, which leads to the introduction and analysis of Mechanism 3. In this mecha-

nism, a significant part of the dissipation is due to bending at the intermediate support. From con-

siderations of the flexural capacities in the different segments joining at the intermediate support a 

final mechanism, Mechanism 4, involving a major part of the bridge, is presented and analysed. 

This later mechanism turns out to be the most critical.  

4.1 Mechanism 1 (pure bending) 

Mechanism 1, as illustrated in Figure 3, represents a possible failure mechanism characterised by 

pure bending at three plastic hinges. The mechanism only involves the left (loaded) span.  

The load is displaced downwards due to the relative rotation of the two parts on each side of the 

concentrated load, as they rotate. The two parts have a common point of rotation located under the 

concentrated load in a distance z from the top side of the element. Near the ends two additional rota-

tional points exists. The location of these points is defined by the horizontal and vertical distance x 

and y, respectively, from the centre of the circular part of the bottom face of the beam element at the 

transition to the supports. The resulting compressive force Fc1 acts in the direction of the tangent of 

circular segment at the considered section.  

In general, the rotation of the two beam parts is controlled by the downward displacement u under 

the concentrated load which results in the angular rotation, of the two half parts of the span. The 

three rotational points are not positioned on a straight line, and in order for the mechanism to be 

geometrically possible there must also be a horizontal movement of the outer rotational point, re-

sulting in a slightly greater rotation of the hinge near the outer support.  
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Figure 3. Mechanism 1. Mechanism characterized by pure rotation 

Having described the kinematics of the mechanism it is possible to set up the expressions for the 

internal and external work. The capacity is found by minimisation of P with respect to x, y and z, 

and the optimizations leads to P = 13.2 MN. This is obtained for: x = 148 mm, y = 727 mm and z = 

73 mm. 

4.2 Mechanism 2 (local shear) 

The starting point for the analysis with respect to the shear capacity will be the classic shear mecha-

nism shown in figure 4. The mechanism does not comply with the geometric boundary conditions as 

the right part is assumed to move downwards by pure translation. This will, however, be taken into 

account in mechanism 3.  
 

hcot 
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Figure 4. Mechanism 2. Classic shear mechanism 

When considering sliding in the concrete the question is how much of the cross-sectional area that 

will be effective, and therefore should be included. As proper shear reinforcement is only provided 

in the part designated A2 (grey shaded), only this part will be considered when assessing the re-

sistance towards sliding. Concerning the shear reinforcement the question is to which extent the 

bent up bars from the transverse reinforcement in the middle part should be incorporated. These bars 

are bent up and should therefore (at least to some extent) be incorporated. It has been chosen to fully 

to take theses bend up bars into account. The reinforcement utilized as shear reinforcement in the 

cross section is shown in figure 5. 
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Figure 5. Only reinforcement utilized in carrying the shear force is sketched 

On the basis of these assumptions the capacity is again found by using the work equation and mini-

mized with respect to . The optimization leads to P = 8.9 MN and is found for  = 32.4o 

As mentioned, the “classic shear mechanism” shown in figure 4 is not geometrically possible. A 

punching-mechanism involving two symmetrical failure lines is admissible but will lead to twice the 

capacity, as the dissipation is simply multiplied with a factor of 2, and thus P = 17.8 MN  

4.3 Mechanism 3 (Local shear and bending) 

In contrast to mechanism 2, a geometrically possible mechanism is shown in Figure 6. The part on 

the right side of the concentrated load rotates around the rotation point determined in the analysis of 

the bending mechanism. As the rotation point, with good approximation, is located at the level of 

the longitudinal reinforcement in the bottom of the beam there will be no contribution from this re-

inforcement. Due to the rotation the displacement vector is not vertical above this point on the in-

clined failure line originating from the concentrated load. The vertical component of the displace-

ment vector under the concentrated load is again defined as u. The dissipation from the inclined 

yield line is determined based on the displacement vector in the centre of the beam, u1. This is an 

approximation as both 1 and u1 varies along the yield line. The deviation on the calculated dissipa-

tion between this approximation for 1 and u1 and applying the correct expression is, however, very 

small. The contribution from the plastic hinge at the right side of the rotating part is identical to the 

contribution determined in the analysis of mechanism 1.  
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Figure 6. Mechanism 3. Combined shear and bending mechanism. Local mechanism 

The optimal solution is found for  = 32.8o leading to P = 13.1 MN. It is noted, that the additional 

contribution from the rotation near the support is seen to provide a significant contribution to the 

capacity. 

4.4 Mechanism 4 (Global shear and bending) 

By further considering the moment capacity of the beams, it is observed that by moving the plastic 

hinge to the right span, and requiring an additional plastic hinge in the column, the resulting mo-

ment capacity will be considerable smaller than the configuration just considered in mechanism 3. 
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Figure 7. Mechanism 4 

The angle of rotation is of the same magnitude, whereby the dissipation will be much smaller, and 

thus leading to a smaller calculated capacity, and thus more critical mechanism. The mechanism is 

sketched in Figure 7 and 8. The plastic hinge in the middle column is placed just outside of the cir-

cular part between column and beam, that is 700 mm from underneath the bottom of the beams. A 

horizontal displacement uo is, as shown in Figure 9, introduced as an additional free kinematic pa-

rameter. 
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                     Figure 8. Mechanism 4. Combined shear and bending mechanism                   Figure 9. 

Optimum is found for  = 35.3o, a= 3000 mm, uo = 0.061 and 3= 4 (no hinge at the outer right cor-

ner). The mechanism renders the capacity P = 11.6 MN. Of the three kinematically admissible 

mechanisms considered, this is therefore the most critical.  

5. Discussion 

The on-site test revealed a capacity of 11.7 MN with respect to the concentrated load P, and the ca-

pacity corresponding to the most critical mechanism was found to be 11.6 MN which is very close 

to the measured capacity. The critical mechanism includes a sliding failure near the concentrated 

loads. Photos clearly support the presence of a shear failure at that position, see Figure 10.  

 

Figure 10. Observed shear failure next to concentrated loads [3] 

In addition, the critical mechanism includes plastic hinges in the columns/walls at mid span as well 

as in the adjacent bridge deck. With respect to the later it has not been possible to find pictures of 

the adjacent span that could reveal the presence of larger cracks or upward deflections. On the con-
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trary, the photos in Figure 11 indicates a plastic hinge in the top of the column. In this connection, it 

should be emphasized that the model is based on incremental displacements and not absolute dis-

placements. In the present case it is reasonable to conclude that the photos documents the formation 

of both the sliding failure as well the plastic hinges. 

     

(a) (b) 

Figure 11. (a) a clear kink is seen at the top of the column (b) clear horizontal cracks at the top of the column. 

In [3] a range of different numerical models were analysed, and Figure 12 illustrates the crack pat-

tern at peak load (P=10.5 MN) according to a non-linear model developed using ATENA 2D. Se-

vere web cracking near the concentrated load indicates significant influence of shear at that location. 

In addition, large cracks and plastic deformation are presents in top of columns/wall, and in the ad-

jacent span.  

 

Figure 12. Crack pattern at peak load P=10.5 MN. Cracks larger than 0.5 mm. Taken from [3]. 

6. Conclusion 

Simple modelling based on rough material modelling not only provides a good estimate of the ca-

pacity on a real scale structures; it also highlights the critical mechanisms and thus the critical parts 

of the bridge structure. It illustrates, that a clear physical interpretation of the behaviour of the actual 

structure to be analysed as well as the involved materials it is essential. Beside the good agreement 

between the calculated and measured capacity the application of the upper bound approach also 

points out the critical parts of the bridge, as shown in Figure 8. The results are supported by both 

on-site observations and non-linear modelling.  
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1. Introduction - the problem  

The idea behind this form finding problem was initiated by the late professor Sven Sahlin, our out-

standing teacher and colleague. He was a professor in Structural engineering, at Chalmers (CTH) in 

Gothenburg and later at the Royal Institute of Technology (KTH) in Stockholm.  

A one span “Euler-Bernoulli” beam with variable section is studied. The task is to find the variation 

of bending stiffness EI(x) that gives the largest hogging moment, MA, at the clamped point A. The 

stiffness relation between the ends is “n” according to Figure 1.1. The stiffness variation between A 

and B is free. The loading q is constant along the beam. The modulus of elasticity, E, is assumed 

constant. 

RB

q

A

B

MA

EI (x)

EI0

nEI 0 L

x
 y
 

Figure 1.1 Beam with variable bending stiffness. The direction of the hogging moment is consi-dered positive as 

shown. 
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1.1 Some general discussion 

If the second moment of area is constant along the beam, n = 1, the hogging moment is 

2

A,min
8

qL
M   (1-1) 

restricting this study to 1n  . Is it possible to find a distribution of EI(x) that leads to RB = 0? If 

such a case exists the hogging moment would be 

 
2 2

A,max A,min4 4
2 8

qL qL
M M      (1-2) 

Obviously, we are looking for values 

2

A ;where 1 4
8

qL
M      (1-3) 

1.2 General equations for “Euler-Bernoulli Beams” 

The equation describing this theory gives the relationship between the deflection of the beam and 

the applied load: 

2 2

2 2

d d
( )

d d

y
EI x q

x x

 
  

 

 (1-4) 

The curve y(x) describes the deflection y of the beam at some position x (recall that the beam is 

modelled as a one-dimensional object). q is a distributed load, in other words a force per unit 

length. 

Note that E is the modulus of elasticity and that   0I x   is the second moment of area (area mo-

ment of inertia). I(x) must be calculated with respect to the centroidal axis perpendicular to the 

applied loading. For an Euler-Bernoulli beam (not under axial loading) this axis is called the neu-

tral axis. 

Successive derivatives of y have important meanings 

y is the deflection (1-5) 

d

d

y

x
  is the slope deflection of the beam at point x. (1-6) 

 
2

2

d
( )

d

y
M x EI x

x
   is the bending moment at any point x (1-7) 

and 

 
2

2

d d d
( ) ( )

d d d

y
Q x M x EI x

x x x

 
     

 

 is the shear force in the beam at any point x. (1-8) 

2. Solutions for continuous variation of beam stiffness 

2.1 Introduction  

Equation (1-4) is re-written for the case q = constant 
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d d
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d d

y
EI x q

x x

 
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d d
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d d

y q
I x

Ex x

 
  
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 (2-1) 

This equation can be integrated twice 

2 2

2

d
( )

2d

y q x
I x Cx D

Ex
    (2-2)  

where C and D are unknown constants. After rewriting  

 
2

2

qx
M x CEx DE     (2-3) 

But   0M L          
2

q
M x L x L x CE

 
    

 
 

This equation indicates that  M x  is a second order distribution, c.f. Figure 2.4, but the equation 

does not lead to a solution, since the constant C is still unknown. Going back to equation (1-4) and 

developing: 

 
2 3

2 3

d d ( ) d d

d d d d

I x y y q
I x

x x Ex x

 
   

 

 (2-4) 

2 2 3 4

2 2 3 4

d ( ) d d ( ) d d
2 ( )

dd d d d

I x y I x y y q
I x

x Ex x x x
    (2-5) 

The task is to find the largest numerical value of 
2

0 2

0

d
( )

d
x

x

y
M EI x

x




 
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 

 

It is hard to solve Eq. (2-5) analytically when the moment of inertia varies along the beam, so let’s 

look at a numerical solution.  

2.2 Numerical solution of Eq. (2-5) 

A central difference scheme is used to find a solution of Euler-Bernoulli beam equation. The num-

bering of points is shown in Figure 2.1 below 

0 1 j kj+1j  1 1 k1 k+1

/L k

L

 

Figure 2.1 To solve the problem using the finite difference method equidistant points along the beam are 

defined as shown in the figure. 

The beam length L is divided in k segments with length /L k   and the points are numbered ac-

cording to Figure 2.1. Central differences of the first order are used. 

   2
1 1
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
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


          (2-8) 

   
4

2
2 1 1 24 4

d 1
4 6 4

d
j j j j j

y
y y y y y O

x



          (2-9) 

The notation 2( )O   “ordo” is used to describe the remaining terms in the series approximation of 

the derivatives and show that the remaining terms are here of the order 2. This in turn shows that 

the accuracy gets better the more segments that are used in the beam to approximate the derivatives. 

The following formula Eq. (2-10) is valid for an interior point at the beam where the notation  = 

L/k is used 

   

 

2

1 1 2 1 1 22 2 3

2 1 1 24

1 d 2 d
2 2 2

dd 2

4 6 4

j j j j j j j
jj

j
j j j j j

I I
y y y y y y y

xx

I q
y y y y y

E

 



     

   

   
              

     

 (2-10) 

At the end A the following border conditions apply 

0

1 1

0

where 1 gives clamped support and 1 gives simple support

y

y GST y

GST GST

 



 

 

 (2-11) 

At end B the following border conditions apply 

1 1

0

where 1 gives clamped support and 1 gives simple support.

k

k k

y

y GSL y

GSL GSL

 



 

 

 (2-12) 

Simple variation of I(x) considering Eqs. (2-11) and (2-12) is tried in the following examples. To 

solve Eq. (2-5) using Eq. (2-1), we need the first and second derivatives: 

First 

order 0 0( ) ( 1)
x

I x nI n I
L

     ;  0

d ( ) 1
( 1)

d

I x
n I

x L
      ;   

2

2

d ( )
0

d

I x

x
  (2-13) 

Second 

order 

2 2

0 0 0 02 2 2

d ( ) d ( ) 1
( ) ( 1) ; 2( 1) ; 2( 1)

d d

x I x x I x
I x nI n I n I n I

L x L x L

 
         

 
 (2-14) 

Third 

order 

   

 

2 3 2

0 0 0 2 3

2

02 2

d ( )
( ) 1 3 2 ; 1 6 6 ;

d

d ( ) 6
1 1 2

d

x x I x x x
I x nI I n I n

L L x L L

I x x
I n

Lx L

      
                      

 
     

 (2-15) 

Note that in the third order case the following relation applies: 

0

d ( ) d ( )
0

d dx x L

I x I x
E E

x x 

   
    

   
 (2-16) 
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Variations for the modulus of elasticity for Eqs. (2.13) – (2.15) is displayed for the case n = 10 in 

Figure 2.2. 

0
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9

10

0 2 4 6 8 10 12 14 16 18 20

I/
I 0

20x/L

First order

Second order

Third order

 

Figure 2.2 Figure 2.2 Variation of stiffness for the three cases Eqs. (2.13) – (2.15) and end stiffness relation n = 10.  

 

 n = 1 n = 10 n = 50 n = 100 n = 200 n = 1000 

Eq. (2.13) 0,996 1,247 1,308 1,319 1,324 1,329 

Eq. (2.14) 0,996 1,264 1,350 1,366 1,375 1,382 

Eq. (2.15) 0,996 1,343 1,517 1,586 1,671 2,064 

Table 2.1 Hogging moment  2
A / / 8M qL  for a variation of n according to the three different simple variation of 

I(x). Note that A
2

8
lim 2

M

qLn
  , c.f. section 2.3. Also note the slow convergence for first and second 

order variation. 

The variation according to Eq. (2.15) gives no parameter for variation of the form of the curve. A 

forth order curve gives one more parameter to vary. 

 0 0( ) 1 ,
x

I x nI I n f
L


 
    

 
 (2-17) 

The general form of a forth order equation is 

4 3 2

( )
x x x x

EI x A B C D E
L L L L

       
           

       
 (2-18) 

Again, using the boundary values: 
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0

0

d ( )
0 ( ) ; 0

d

d ( )
( ) ; 0

d

I x
x EI x nEI E

x

I x
x L EI x EI E

x

   

   

 

and a parameter defined at / 0,5 1x L    . The result using the notation 2 1h    is 

       
4 3 2

0

( )
1 8 2(1 8 ) (8 3)x x x

L L L

EI x
n n h h h

EI

        
  

 (2-19) 

For some values of  the diagram below is achieved for EI(x). 
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04

06

0702

 

Figure 2.3 An assumed variation of stiffness for a forth order function and end stiffness relation n = 10. 

The moment distribution is shown in Figure 2.4. Only strictly decreasing values for EI from the 

clamped support to the simple support are considered here, except in the case  = 0,2. It is possible 

to find higher values for the hogging moment if the stiffness values are much smaller than EI0 close 

to support B. At the end a degenerated case with a hinge (EI = 0) close to the support is formed giv-

ing 4  . 
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Figure 2.4 Moment distribution for an end stiffness relation n = 10 and different values of the parameter 

, all except the case  = 0,2 strictly decreasing stiffness from A to B. 

With the EI-variation according to Eq. (2-17) the hogging moment at A is shown for different val-

ues of  andn10 in Table 2.2 below. 

 

 0,2 0,3 0,4 0,5 0,6 0,702 

 2/ / 8M qL  1,201 1,240 1,286 1,343 1,416 1,514 

Table 2.2 Hogging moment at A for a variation according to a forth order equation for different values of  

and n = 10. The (minimum) optimum is reached at 0,702  . 

For different values of n and the optimized value of  the hogging moment is shown in Table 2.3. 

 

n 10 17 20 50 100 200 1000 

 2/ / 8M qL  1,514 1,631 1,666 1,853 1,978 2,077 1,938 

Table 2.3 Hogging moment at A for a variation according to a forth order equation for different values of n 

and an optimized value of . Again, note that A
2

8
lim 2

M

qLn
  . Note the rapid convergence in 

case of a forth order variation. 

2.3 The case n   

Any distribution of bending stiffness along a beam can be summarized by: 
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L

x
nI n I
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x
nI n I

L













 


  

   
   



  

   
 

 (2-18) 

The previous example used 
2 3

3, 2     

These are all continuous functions of x, which is important in the following: 

Taking m = 1 leads to the bending equation  

0 A

/

1 / 2

x L xL
Ey I n M q

x L

 
    

 
 (2-19) 

Taking m = 2 – while 1 0   – leads to 

 
2

0 A

/
1

1 / 2

x Lx xL
Ey I n M q

L x L

  
      

   

 (2-20) 

Adding to a general form 

1

0 A1

1
( ) 1 1 1

2

k
m

kk

x x xL
EI ny x M q

n L L






     
          

      
  (2-21) 

since 

( ) 0 (0 )lim
n

y x x L


     (2-.22) 

it is possible to conclude that 

 

A

2

A

0
2

4
2

x L

xL
M q

qL
M 



 

 

 (2-23) 

in a degenerated case, as previously stated. 

In a continuous case x L , the analysis leads to  

1

0 0
1

A0

1
( ) 1 1 1 d 0lim

d
2

km
L

k
n k

L

z z
EI n y z z

L n L

zL
M q z




 

       
           

        

 
  

 





 (2-24) 

giving 

2

A ( 2)
4

L
M q    
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This result is independent of the specific distribution of bending stiffness along the beam. 

3. Stepped haunch 

A discontinuous stepped haunch may open the area of definition, 2 4  , for limited values of 

“n”, see Figure 3.1.  

MA

RB

q

A

B

L
x

EI0

nEI0

L
RA

Right

Left

 

Figure 3.1 Schematic figure showing the studied beam with stepped haunch. The figure shows also the 

notations used. In the following the basic stiffness will have the notation EI0. 

In this chapter three methods for studying the stepped situation will be discussed; in Section 3.1 an 

analytical solution, in Section 3.2 a numerical solution and in Section 3.3 optimizing tools in Matlab 

combined with methods having been used to find the largest value of the hogging moment at the A 

support. 

3.1 Analytical solution for the stepped beam 

The equation describing this theory gives the relationship between the beam's deflection and the 

applied load: 

2 2

2 2

d d
( )

d d

y
EI x q

x x

 
  

 

 (3.1-1) 

( )y x must have equal value, on both sides of a haunch, positioned at  0 1L   : 

left right( ) ( )y L y L   , but 
0

( )
( )

M x
y x

nEI
   to the left and 

0

( )
( )

M x
y x

EI
   to the right. This is 

only possible if  

( ) 0M L   (3.1-1´) 

Using Eq. (3.1-1) for beam part 0 x L   gives  

2

A A

( ) 1

2

M x x
y M R x q

nEI nEI

 
         

 

 (3.1-2) 

Equilibrium gives since B 0M  : 
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2

A A A A

1
0

2 2

L L
M R L q R M q

L
        (3.1-3) 

Insertion of Eq. (3.1-3) gives 

2

A A

1

2 2

x L x
y M M q x q

nEI L

 
        

 

 (3.1-4) 

After simplification the result is: 

A

1
1 1

2

x xL x
y M q

nEI L L

    
          

    
 (3.1-5) 

or 

 A

1
1 , note that lim  0

2 n

xL x
y M q y x

nEI L 

  
      

  
 (3.1-5’) 

Eq. (3.1-5) integrates once 

2 2 3

A A

1
( )

2 4 6

x x x
y x M x M qL q C

nEI L

 
         

 

 (3.1-6) 

(0) 0 0y C     

 
2

2
A

1

2 6 4 x Lx L

x x L
y L M x qx

nEI L 




    
              

 (3.1-7) 

Inserting the x-value gives 

 
2

3
A

1 2
1 1

2 4 3
y L M L q L

nEI

 
  

    
        

    

 (3.1-8) 

A second integration gives 

2 3 3 4

A A

1
( )

2 6 12 24

x x x x
y x M M qL q D

nEI L

 
       

 

 (3.1-9) 

(0) 0 0y D    

2 2 3 3

A

1
( ) 1 1

2 3 12 2

L L
y L M qL

nEI

   


    
       

    

 (3.1-10) 

Using Eq. (3.1-5´) for beam part L x L    gives  

A

1
1

2

xL x
y M q

EI L

  
     

  
 (3.1-11) 

Eq. (3.1-11) integrates once 

2 2 3

A A 0

1
( )

2 4 6

x x x
y x M x M qL q E

EI L

 
         

 

 (3.1-12) 
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1
( )

2 6 4 x Lx L

x x L
y L M x qx E

EI L 




    
               

 (3.1-13) 

Inserting the x-value gives 

 
2

3
A 0

1 2
1 1

2 4 3
y L M L q L E

EI

 
  

    
         

    

 (3.1-14) 

A second integration of Eq.(3.1-12) gives 

2 3 3 4

A A 0

1
( )

2 6 12 24

x x x x
y x M M qL q E x F

EI L

 
        

 

 (3.1-15) 

Inserting the x-value L gives 

2 2 4 4

A A 0

2 2

A 0

1
( ) 0

2 6 12 24

1

3 8

L L L L
y L M M q q E L F

EI

L qL
M E L F

EI

 
          

 

 
     

 

 (3.1-15´) 

2 2

A 0

1

3 8

L qL
F M E L

EI

 
     

 

 (3.1-15´´) 

Inserting the valueL  in Eq. (3.1-15) gives 

3 3
2 2A

0

1
( ) 1 1

2 3 12 2

M L
y L L qL E L F

EI

  
  

    
         

    

 (3.1-16) 

At the connection between the two stiffness parts nEI (Left) and EI (Right), y  and y should have 

identical values. This leads to the following terms and equations  

L R( ) ( )y L y L   : 

2
3

A

2
3

A 0

1 2
1 1

2 4 3

1 2
1 1

2 4 3

M L q L
nEI

M L q L E
EI

 
 

 
 

    
       

    

    
        

    

 (3.1-17) 

or simplified 

2
3

A 0

1 1 2
1 1 1 0

2 4 3
M L q L E

EI n

 
 

      
           

      

 (3.1-17´) 

L R( ) ( )y L y L   gives 
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2 2 3 3
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2 2 3 3

A 0

1
1 1

2 3 12 2
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1 1

2 3 12 2
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M qL

nEI
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M qL E L F

EI
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   


    
       

    

    
         

    

 (3.1-18) 

or simplified  

2 2 3 3

A 0

1 1
1 1 1 0

2 3 12 2

L L
M qL E L F

EI n

   


      
            

      

 (3.1-18´) 

and 

 
2 2

0 0 A

1
1

3 8

L qL
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 

 
       

 

 (3.1-19) 

Combining Eqs. (3.1-18´) and (3.1-19) gives 

 
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 (3.1-20) 

Inserting Eq. (3.1-17´) in Eq. (3.1-20) gives 
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 
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 

 (3.1-21) 

Eq. (3.1-21) can by separating MA from q and L lead to the conclusive formula: 
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  (3.1-22) 

or 
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   
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 

 (3.1-22´) 

Based on Eq. (3.1-22)  is shown in Table 3.1 and Figure 3.2 as a function of n and . The more 

exact values for  must be calculated by derivation of Eq. (3.1-22) according to Eq. (3.1-23) 
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 (3.1-24) 

After simplification the result is 

 2 21
1 4 6 4 1 0

n
   

 
      

 
 (3.1-25) 

By studying Eq. (3.1-25) it is possible that the value 0,5   can give an interesting value for n. 

Inserting this  - value in this equation gives the value 17n  . Inserting  = 0,5 and n = 17 in Eq. 

(3.1-22) gives max 2  . The insertion of Eq. (3.1-25) into Eq. (3.1-22) leads to the general formu-

la: 

max 4  , with  satisfying Eq. (3.1-25) (3.1-26)  

What happens with  in the case n  ? Setting this condition in Eq. (3.1-22´), gives the formula  

2 2

2

(3 8 6) 1
lim

( 3 3) 1n

  


  

  


  
 (3.1-27) 

Results are given in Table 3.1 and Figure 3.2b. 
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Alfa\n    10 17 100 1 000 10 000 100 000 1 000 000 

 

 

0,000 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

0,050 1,13 1,14 1,15 1,15 1,15 1,15 1,15 1,15 

0,100 1,26 1,28 1,30 1,30 1,30 1,30 1,30 1,30 

0,150 1,38 1,41 1,44 1,45 1,45 1,45 1,45 1,45 

0,200 1,49 1,53 1,59 1,60 1,60 1,60 1,60 1,60 

0,250 1,59 1,65 1,73 1,75 1,75 1,75 1,75 1,75 

0,300 1,68 1,76 1,87 1,90 1,90 1,90 1,90 1,90 

0,350 1,75 1,86 2,01 2,05 2,05 2,05 2,05 2,05 

0,400 1,79 1,93 2,15 2,19 2,20 2,20 2,20 2,20 

0,450 1,81 1,98 2,27 2,34 2,35 2,35 2,35 2,35 

0,500 1,79 2,00 2,39 2,49 2,50 2,50 2,50 2,50 

0,550 1,74 1,98 2,49 2,63 2,65 2,65 2,65 2,65 

0,600 1,66 1,91 2,55 2,77 2,80 2,80 2,80 2,80 

0,650 1,54 1,79 2,58 2,91 2,95 2,95 2,95 2,95 

0,700 1,41 1,63 2,53 3,02 3,09 3,10 3,10 3,10 

0,750 1,28 1,45 2,37 3,11 3,24 3,25 3,25 3,25 

0,800 1,16 1,27 2,06 3,13 3,37 3,40 3,40 3,40 

0,850 1,08 1,13 1,64 2,97 3,48 3,54 3,55 3,55 

0,900 1,02 1,04 1,24 2,35 3,45 3,67 3,70 3,70 

0,950 1,00 1,01 1,03 1,32 2,58 3,64 3,83 3,85 

0,960 1,00 1,00 1,02 1,17 2,12 3,49 3,84 3,88 

0,970 1,00 1,00 1,01 1,08 1,62 3,12 3,81 3,91 

0,980 1,00 1,00 1,00 1,02 1,22 2,31 3,61 3,94 

0,990 1,00 1,00 1,00 1,00 1,03 1,27 2,48 3,97 

1,000 1,00 1,00 1,00 1,00 1,00 1,00 1,00 4   1 

Table 3.1 -values as function of n and including the case n   . Points coloured yellow are “close” to the 

maximum value. Note that ( ) 0M L  . 


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Figure 3.2a -values as function of n and . See also Figure 3.2b. 

 

Figure 3.2b  -values as function of n and . The figure is showing a part of Figure 3.2a and including the case 

n  .  
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The left hand side of Eq. (3.1-25) is shown in Table 3.3 and Figure 3.3. 

Alfa\n 10 17 100 10 000 1 000 000   
 

0,000 1,000 1,000 1,000 1,000 1,000 1,000 

0,050 0,813 0,814 0,814 0,815 0,815 0,815 

0,100 0,650 0,653 0,656 0,656 0,656 0,656 

0,150 0,510 0,515 0,521 0,522 0,522 0,522 

0,200 0,389 0,397 0,408 0,410 0,410 0,410 

0,250 0,285 0,298 0,313 0,316 0,316 0,316 

0,300 0,196 0,214 0,236 0,240 0,240 0,240 

0,350 0,121 0,144 0,173 0,178 0,179 0,179 

0,400 0,057 0,087 0,122 0,130 0,130 0,130 

0,450 0,002 0,039 0,083 0,091 0,092 0,092 

0,500 -0,044 0,000 0,052 0,062 0,062 0,063 

0,550 -0,083 -0,032 0,029 0,041 0,041 0,041 

0,600 -0,117 -0,058 0,011 0,025 0,026 0,026 

0,650 -0,146 -0,080 -0,001 0,015 0,015 0,015 

0,700 -0,173 -0,098 -0,010 0,008 0,008 0,008 

0,750 -0,196 -0,114 -0,016 0,004 0,004 0,004 

0,800 -0,219 -0,128 -0,020 0,001 0,002 0,002 

0,850 -0,240 -0,141 -0,023 0,000 0,001 0,001 

0,900 -0,260 -0,153 -0,026 0,000 0,000 0,000 

0,950 -0,280 -0,165 -0,028 0,000 0,000 0,000 

1,000 -0,300 -0,176 -0,030 0,000 0,000 0,000 

Table 3.3  Value of left hand of Eq. (3.1-25) as a function of n and now completed with the case n =17 and 

n  . 

 


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Figure 3.3  Value of left hand of Eq. (3.1-25) as a function of n and now completed with the cases n =17 and 

n  . 

3.2 Numerical solution 

A numerical solution can be achieved using the same methodology as was described above in Sec-

tion 2.2. The abrupt variation of stiffness is at a point x = L, see Figure 3.4. 

0 1 j kj+1j  1 1 k1 k+1

/L k 

L

 

Figure 3.4 To solve the problem using the finite difference method equidistant points along the beam is de-

fined as shown in the figure. At one point m, x = L, the stiffness is reduced from nI0 to I0 accord-

ing to Figure 3.1 and 3.5. 
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m  2 m  1 m  1 m  2m 

m  2 m  1 (m  1)fm (m  2)f

nEI0 EI0

(m  1)f(m  2)f m m  1 m  2 m  3

nEI0

EI0

x =L

 

Figure 3.5 The beam part from 0 to point m has stiffness nI0 and from m to k the stiffness is I0. 

In this case we must take the abrupt stiffness variation into account according to Eqs. (3.2-1) to (3.2-

5). The following relations applies at the point of stiffness variation 

f
m my y   (3.2-1) 

   f f
1 1 1 1

1 1

2 2
m m m my y y y

 
         (3.2-2) 

   f f0 0
1 1 1 12 2

2 2m m m m m m

nEI EI
y y y y y y

 
         (3.2-3) 

   f f f f0 0
2 1 1 2 2 1 1 23 3

2 2 2 2
2 2

m m m m m m m m

nEI EI
y y y y y y y y

 
                 (3.2-4) 

   f f f f0 0
2 1 1 2 2 1 1 24 4

4 6 4 4 6 4m m m m m m m m m m

nEI EI
y y y y y y y y y y

 
               

 (3.2-5) 

Since the segments are the same over the whole beam the above equations can be simplified 

f
m my y  (3.2-1´) 

f f
1 1 1 1m m m my y y y         (3.2-2´) 

f f
1 1 1 12 2m m m m m mny ny ny y y y         (3.2-3´) 

f f f f
2 1 1 2 2 1 1 22 2 2 2m m m m m m m mny ny ny ny y y y y                 (3.2-4´) 

f f f f
2 1 1 2 2 1 1 24 6 4 4 6 4m m m m m m m m m mny ny ny ny ny y y y y y                 (3.2-5´) 

Combining Eqs. (3.2-2) and (3.2-3) give the following relations 
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  

  
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 f
1 1 1

2 11 2

1 1 1
m m m m

nn n
y y y y

n n n
  


  
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 (3.2-7) 

The task is to calculate the beam deformation and moment variation from point 0 to point k using 

Eq. (3.2-6) 

4

4

d
( )

d

y
EI x q

x
  (3.2-8) 

Inserting the approximation (2.9) in (3.2-6) the following equation is received at point j if the re-

maining terms in the series approximation are omitted. 

 2 1 1 24

( )
4 6 4j j j j j j

EI x
y y y y y q


         (3.2-9) 

If equations of type (3.2-9) are written for all points on the beam, 1k   equations are obtained for 

points 0 to k. Observe that in our case q is constant along the beam. To get conditions for the points 

outside the beam, the end conditions are used.  
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1 1

...... ... ... ... ... ... ... ... ... ...
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... 0 1 4 6 4 1 0 ...
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... ... ... ... ... ... ... ... ... ......
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j j j
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yj q

j qy





 

    
           
      
    

       
        

   (3.2-10) 

or 

A y = q  (3.2-10´) 

In this special case the matrix terms must be changed according to Eqs. (3.2-1) - (3.2-7) depending 

on the variation of the modulus of elasticity. 

Eq. (3.2-8) implies that a matrix equation with k + 1 unknowns has to be solved, if the points out-

side the beam could be eliminated using the end conditions. When the deformations 

1 1... , , ...j j jy y y   are decided after solving Eq. (3.2-8) for the y  vector giving 1 y = A q , the mo-

ment M(x) at certain points yj of the beam can be calculated using the equations 

 1 12

( )
( ) 2j j j j j

EI x
M x EIy y y y


        (3.2-11) 

In this case k = 20 is used, which means that the matrices A  and 1
A  have the rank  21 21 . The 

A-matrix is shown in Figure 3.5 for the case case  = 0,5 and n = 17. The distribution of moment 

using Eq. (3.2-11) is shown in Figure 3.6. In Table 3.3 the following results are presented. 
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\ n 10 17 20 50 100 200 1000 

0,40 1,788 1,9255 1,9596 2,091 2,140 2,167 2,188 

0,45 1,805 1,9762 2,020 2,196 2,266 2,304 2,335 

0,50 1,790 1,9950 2,050 2,283 2,381 2,435 2,481 

Table 3.4 Optimum hogging moment in a stepped beam for different values of  and n. 

Using the numerical method presented in Section 3.2 will lead to approximate solutions, but for the 

tests shown in Table 3.4, the results are very close to the exact solutions, compare Table 3.2. It is 

though possible to improve accuracy by dividing the beam into more segments, but it is more effi-

cient to use the “Richardson extrapolation method”. 

3.3 Using computer tools to find the largest hogging moment 

A PhD student Ignacio Gonzalez at the div. of Structural engineering and bridges at KTH has used 

optimizing tools in Matlab and analytical methods to find the largest value for the hogging moment 

at the support. He is confident that the optimized distribution of the moment of inertia leads to the 

stepped case.  

He received the following formulas for finding the position of the step, where for a given n the val-

ue of  satisfies Eq. (3.3-1) 

2 3 4 2 3 46 4 6 4 4 0n n n n n               (3.3-1) 

and then using this value for calculation of the hogging moment using the following Eq. (3.3-2) 

2 3 4 2 3 4
A
2 2 2 2 3 2 2 3 2

6 8 3 6 8 3

3 3 3 3

M n n n n
n

qL n n n n n n n

     

     

     


     
 (3.3-2) 

Eqs. (3.3-1) and (3.3-2) are in principle the same as Eq. (3.1-25) and Eq. (3.1-22), but the author of 

this section used an approximate method, since Matlab was complicated to use for getting good re-

sults for many -values. Examples of results are shown in Table 3.5.  

 

n = 10 20 50 100 200 

 = 0,452 0,514 0,591 0,645 0,693 

M/(qL
2
/8) 1,809 2,057 2,366 2,579 2,771 

Table 3.4 Optimum hogging moment in a stepped beam for different values of . Note the 

high precision in relation to the general formula max 4  . 

The result in Table 3.4 and Table 3.3 is in good agreement and it is thus indicated that the stepped 

variation is the optimal solution of the problem. 

3.4 Obviously 

The relation between  and  is linear. At the maximum hogging moment  

max 4  , compare Eq. (3.1-26)  

In consequence 

max0,5 2    ,  

and  
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max 2   ( 17)n  , since d / d 0n  , which is a practical piece of advice to the designer.  

By differencing Eq. (3.1-22´) we get d / dn . We start by analysing the equation 

   A
2

8 2 2 2

2 2

2

1 1
3 3 3 3 3d

d

d d
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

       
    (3.1-

28) 

End then analysing the Numinator  
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3

         

 

Adding the Denominator of Eq, (3.1-22´) squared gives (3.1-

29) 

 

 

32
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2
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1d(8 / )
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d 1
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3.5 Equilibrium 

This is a very simple model to illustrate what happens if the moment at the beam haunch generally 

is equal to zero i.e. ( ) 0M L  . A continuous variation of M(x) over the hinge, i.e.   

L R

0 0

( ) ( )M L M L

nEI EI

 
  (3.5-1) 

is only possible when ( ) 0M L  . A hinge is illustrated at the connection L  between the two 

beam parts. 
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Each beam part must be in equilibrium but only two equations are used to eliminate the shear force 

CR  at the connection. 

MA

q

nEI0

RC

RC EI0

q

L

L
RB

RA

 

A moment equation at A gives 

A C
2

L
M Lq R L


     (3.5-2) 

A moment equation at B gives 

C

(1 )
(1 ) (1 ) 0

2

L
qL R L


 


     (3.5-3) 

or simplified 

C

(1 )

2
R qL


   (3.5-3´) 
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Combining Eqs. (3.5-2) and (3.5-3) gives 

2 2 2

A

(1 )

2 2 2

qL qL
M qL L

 
 


    (3.5-4) 

and 

A
2

8
4

M

qL
 


    (3.5-5) 

which indicates that  

max   at ( ) 0M L    (3.5-6) 

and   satisfying Eq. (3.1-25) 
Point 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 -4 7 -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 -4 6 -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 -4 6 -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 -4 6 -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 1 -4 6 -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 1 -4 6 -4 1 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 -4 6 -4 1 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 1 -4 6 -4 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 1 -4 5,11111 -2,22222 0,11111 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 -2,22222 1,50327 -0,33987 0,0588235 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0,11111 -0,33987 0,40523 -0,235294 0,0588235 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,235294 0,3529412 -0,235294 0,0588235 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,235294 0,3529412 -0,235294 0,0588235 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,235294 0,3529412 -0,235294 0,0588235 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,235294 0,3529412 -0,235294 0,0588235 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,235294 0,3529412 -0,235294 0,05882353 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,235294 0,3529412 -0,2352941 0,0588235 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,235294 0,35294118 -0,235294 0,0588235

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0588235 -0,2352941 0,2941176 -0,235294

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

-2,0000 4,0000 -1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 -0,0588 0,1176 0,8235 

Figure 3.5   Matrix A for the case  = 0,5 and n = 17, see Section 3.2. 

The moment distribution using Eq. (3.2-11) is shown in Figure 3.6 for the same case as in Figure 

3.5.  

 

 

Figure 3.6 Moment variation from A to B for the case  = 0,5 and n = 17. Observe that the 

moment at point 10 ( 0,5L  ) is almost but not exact 0,00. The moment at A is 

given in Table 3.4. (The numerical method used in Section 3,2 will not give the 

exact values, but good enough for practical use.  
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4. Notations 

Roman letter Definition Basic unit 

D denominator - 

E modulus of elasticity 
N/m

2
 

h parameter - 

I second moment of area 
m

4
 

I0 
second moment of area at point B Nm 

j, k numbering of points along the beam from 0 to k - 

L beam length m 

M moment  Nm 

m numbering of points at stepped beam stiffness - 

MA 
hogging moment at point A Nm 

n factor increasing the beam stiffness end at point A  - 

N nominator - 

q distributed load N/m 

RB 
shear force at point B N 

x horizontal coordinate  m 

y vertical deflection m 

z length coordinate m 

 

Greek letter Definition Unit 

 value L (0 < 1 ) defining point of stepped beam stiffness  - 

 factor showing the end hogging moment  - 

 parameter for defining form of second   

 step defining equidistance between points along the beam  

 slope deflection  

5. References 

Ostenfeld, A, “Teknisk Statik I, 1908 

Forssell, G, ”Byggnadsstatik I – II, 1919 

Timoshenko, & Young, D H, ”Theory of Structures”, 1945 

Nylander, H, “Byggnadsstatik II”, 1952 
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Överblivet material: 

 

n  =  10 17 100 1 000 10 000 100 000 1 000 000

alfa
0,000 1,00 1,00 1,00 1,00 1,00 1,00 1,00

0,050 1,13 1,14 1,15 1,15 1,15 1,15 1,15

0,100 1,26 1,28 1,30 1,30 1,30 1,30 1,30

0,150 1,38 1,41 1,44 1,45 1,45 1,45 1,45

0,200 1,49 1,53 1,59 1,60 1,60 1,60 1,60

0,250 1,59 1,65 1,73 1,75 1,75 1,75 1,75

0,300 1,68 1,76 1,87 1,90 1,90 1,90 1,90

0,350 1,75 1,86 2,01 2,05 2,05 2,05 2,05

0,400 1,79 1,93 2,15 2,19 2,20 2,20 2,20

0,450 1,81 1,98 2,27 2,34 2,35 2,35 2,35

0,500 1,79 2,00 2,39 2,49 2,50 2,50 2,50

0,550 1,74 1,98 2,49 2,63 2,65 2,65 2,65

0,600 1,66 1,91 2,55 2,77 2,80 2,80 2,80

0,650 1,54 1,79 2,58 2,91 2,95 2,95 2,95

0,700 1,41 1,63 2,53 3,02 3,09 3,10 3,10

0,750 1,28 1,45 2,37 3,11 3,24 3,25 3,25

0,800 1,16 1,27 2,06 3,13 3,37 3,40 3,40

0,850 1,08 1,13 1,64 2,97 3,48 3,54 3,55

0,900 1,02 1,04 1,24 2,35 3,45 3,67 3,70

0,950 1,00 1,01 1,03 1,32 2,58 3,64 3,83

0,960 1,00 1,00 1,02 1,17 2,12 3,49 3,84

0,970 1,00 1,00 1,01 1,08 1,62 3,12 3,81

0,980 1,00 1,00 1,00 1,02 1,22 2,31 3,61

0,990 1,00 1,00 1,00 1,00 1,03 1,27 2,48

1,000 1,00 1,00 1,00 1,00 1,00 1,00 1,00  

Table 3.1 -values as function of n and . Points coloured yellow are “close” to the maximum value. Again, M(x) is a 

second order distribution. Note that ( ) 0M L   
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